加法结合律教案范例六篇

加法结合律教案范例六篇。

每一位教师都需要提前准备好自己的教案和课件,在写教案和制作课件方面,相信教师们并不陌生。我们应该从哪些角度来编写教案和制作课件,以使得课堂教学有着不同的氛围呢?非常荣幸地为大家推荐一篇关于“加法结合律教案”的文章,请将此页收藏起来,下次访问时将更加方便!

加法结合律教案 篇1

新北师大版四年级上册数学《加法结合律》教学设计

教学目标:

1.理解和掌握加法结合律,并应用加法结合律使计算简便。2.培养观察、归纳、概括的能力。教学重点:理解并掌握加法结合律。教学难点:加法结合律的推导。教学过程:

一、复习导入

20+34=()+()36+()=64+()A +700=()+()

二、新授

1.出示准备题:

37+26+63、37+(26+63)59+38+732和59+(38+732)

讨论:比较两式题的异同。刚才的两个例子说明了什么?

2.上述两题符合猜想,可能是偶然。请同学们自己来找一找符合猜想的式题。(学生自由举例,小组交流结果。汇报结果,找到许多式题符合猜想。)3.能证明猜想正确,还有我们身边的一些生活实例。

请同学们用多种方法解决问题:李叔叔骑车旅行第一天骑了88千米,第二天骑了104千米,第三天骑了96千米,这三天李叔叔一共骑了多少千米?

三、小组展示 1.学生先汇报

A.口头列式:(88+104)+96 88+(104+96)B.分别说说先求什么,再求什么? C.判断,得数会相同吗?(相同)

D.计算结果。得出(88+104)+96=88+(104+96)

2.提问:以上几个加法算式中,每个算式等号的左边和右边有什么相同和不同的地方?

3.用字母表示加法结合律。

(1)谁能用符号(任意选3个符号)表示加法结合律? 如:(□+△)+○=□+(△+○)

(2)如果用字母a、b、c分别表示3个加数,怎样表示加法的结合律呢?

三、练习

1.下面哪些等式符合加法结合律? a+(20+9)=(a+20)+9 15+(7+b)=(20+2)+b(10+20)+30+40 = 10+(20+30)+40 2.简便计算。273+352+648 64+36+81+19 3.五(1)班有学生51人,四(1)班有学生47人,四(2)班有学生41人,三个班共有学生多少人?(用两种方法解答)板书设计:

加法结合律

37+26+63=37+(26+63)59+38+732=59+(38+732)(88+104)+96 88+(104+96)加法结合律:(a+b)+c=a+(b+c)

加法结合律教案 篇2

教学目标

1、使学生理解、掌握加法结合律.

2、能够应用加法的交换律和结合律进行简便计算。

教学重点

对加法结合律的理解、掌握和应用.

教学难点

加法结合律的运用.

教学步骤

-、铺垫孕伏

1、什么叫加法交换律?用字母如何表示?

2、根据运算定律在下面的()里填上适当的数.

43+67=()+()35+()=65+()

()+18=19+()a+100=()+()

3、下面各等式哪些符合加法交换律?

270+380=390+26020+50+80=20+80+50

a+400=400+a140+60=60+140

谈话引入:以上,我们运用了加法的意义及交换律解决了一些问题,那么关于加法还有没有其他的规律性知识?这些知识又有什么用途呢?这节课我们继续学习这方面的知识--加法结合律和简便运算.(板书课题)

二、探究新知

(一)教学例3、观察下面每组的两个算式,它们有什么样的关系?

(12+13)+14○12+(13+14)

(320+150)+230○320+(150+230)

1、教师提问:

(1)上面等式两边算式有什么相同点?有什么不同点?

相同点:都有三个加数,左右两边的三个数相同;

不同点:加的顺序不同.

(2)每组两个算式的结果怎样?用什么符号连接?每组算式说明什么?

2、归纳加法的结合律.

3、用字母表示加法结合律.

如果用字母a、b、c分别表示3个加数,怎样用字母表示加法结合律呢?

教师板书:(a+b)+c=a+(b+c)

等号左边(a+b)+c表示先把前两个数相加,再同第三个数相加.

等号右边a+(b+c)表示先把后两个数相加再用第一个数相加.

a、b、c表示的数是什么范围的数?

4、练习:根据运算定律在下面的□里填上适当的数.

(25+68)+32=25+(□+□)

130+(70+4)=(130+□)+□

(二)教学简便算法.

应用加法结合律我们可以改变一些数的运算顺序,但应用加法交换律更主要的一点是可以使一些计算简便.

1、例4计算480+325+75

教师提问:同学们想要计算480+325+75,怎样计算比较简便?为什么?应用了什么运算定律?(学生试算)

教师板书:

480+325+75

=480+(325+75)

=480+400

=880

2、例5计算325+480+75

教师提问:这道题怎样算比较简便?为什么?应用了什么运算定律?(集体订正)

325+480+75

=325+75+480

=(325+75)+480

=400+480

=880

教师提示:哪一步可以省略?

325+480+75

=325+75+480

=400+480

=880

3、比较例4、例5在应用运算定律方面的不同

例4没有调换加数的位置,直接应用了加法结合律进行了简算;

例5要使325与75相加,则必须先应用加法交换律将75交换到480的前面,再应用加法结合律简算.

4、反馈练习:137+31+63,怎样计算比较简便?用了什么定律?

5、想一想,过去哪些计算应用了加法的结合律?

(在做口算加法时应用了加法结合律)

如:36+48

36+48=36+(40+8)=(36+40)+8=76+8=84

教师说明:根据加法结合律不仅可以做口算加法,还使一些计算简便.简算时要注意数字特点.

三、巩固发展

1、根据运算定律在下面的□填上适当的数.

369+258+147=369+(□+147)

(23+47)+56=23+(□+□)

654+(97+a)=(654+□)+□

2、下面哪些等式符合加法结合律?

a+(20+9)=(a+20)+9

15+(7+b)=(20+2)+b

10+20+30+40=10+(20+30)+40

3、下面各题怎样算简便就怎样算.

88+75+126+2+7+4+8

79+145+2114+9+2+11+6

25+97+15+37+39+43+61+8+32

4、选择比较简便的方法填在括号里.

(1)399+154+201=()

①399+(154+201)②(399+201)+154

(2)374+268+126+432=()

①(374+126)+(268+432)②(374+126)+268+432

四、全课小结

今天我们学习了哪些新知识?什么叫做加法结合律?与加法交换律有什么不同之处?

五、布置作业

光明小学篮球队队员的身高分别是:160厘米、164厘米、158厘米、156厘米、162厘米.队员的平均身高是多少?

六、板书设计

加法结合律教案 篇3

【学习内容】

加法结合律。教科书第57页。

【文本分析】

加法结合律是《运算律》单元第一课时的第二个例题,这节课的教学内容包括加法交换律和加法结合律。这节课是在学生经历了一系列关于四则运算的学习后,对于运算律有了一定的感性认识的基础上,进一步通过一些实例来引导学生进行概括。而加法结合律则是在学习了加法交换律的基础上展开的。本课的教学重点在于让学生在探索中经历运算律的发现过程,理解不同算式间的相等关系,发现规律,概括运算律。但概括运算律则是本课的教学难点。

教学重点:使学生理解并掌握加法结合律,能用字母来表示加法结合律。

教学难点:使学生经历探索加法结合律的过程,发现并概括出运算定律。

【学习目标】

1、让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。

2、通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法结合律的过程,进行比较和分析,发现并概括出运算律。

3、让学生用符号和字母表示出发现的规律,抽象、概括出运算律,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地建构知识。

4、通过学生积极参与规律的探索、发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。

【导学过程】

教学加法结合律。

1、初步感知

课的开始出示例题图,通过解决“参加活动的一共有多少人?”得出一个等式,让学生有一个初步的感知,为接下来进一步进行加法结合律的研究做好铺垫。

(28+17)+23=28+(17+23)

接下来,再出示两组算式,请学生算一算每组两道算式的结果是多少?○里应该填什么符号?积累感性认识的素材。

(45+25)+13○45+(25+13);(36+18)+22○36+(18+22)

2、观察、思考、交流

陶行知先生提出了“六大解放”的主张:解放小孩子的头脑、解放小孩子的双手、解放小孩子的嘴、解放小孩子的空间、解放小孩子的时间及把小孩子的双手、嘴、空间和时间都解放出来。“让学生能够自己去探索、自已去辨析、自己去历练,从而获得正确的认识和熟练的能力。”

“发生认识论”的创立者皮亚杰认为知识、智力的个体发生离不开认识主体的自主活动。只有当学生的能动性充分发挥时,他的聪明才智才能充分表现出来,教学质量才有真正提高的可能。

这个“学生十分钟”的环节我们设计让同学们在学案的指导下自主进行观察、思考和交流。这样设计基于两点原因:一是学生前面已经有了一系列关于四则运算学习的基础,积累了大量的感性认识,具备了探究的知识基础;二是在加法交换律的学习中,学生已经有了一定学习运算律的经验,掌握了一些探究运算律的方法,具备了探究的能力基础。

基于以上两点,我们把加法结合律的探究放手给学生,让学生在学案的指导下独立开展探究活动。

学案中我们设计了以下几个环节:

(1)观察

每组的两道算式有什么相同的地方?有什么不同的地方?

这三组算式有什么共同的特点?

(2)仿写

照样子再写出一组这样的式子,填在上面的横线上。

(3)发现规律

从这些例子中发现了什么规律?再用自己喜欢的方式表示在下面的横线上。

在最后交流的环节,我设计了两个层次:一是小组交流,希望在这个环节中能够充分发挥优生的作用,让学生教学生,同时由于前面有充分的思考时间,学习能力较弱的学生也有话可说,而不是只能做一个听众;二是全班交流,这段时间仍然是交给学生的,代表小组发言的孩子主讲,把他们小组的讨论进行汇报,再由其他的孩子进行纠正和补充,全面调动学生的眼、耳、脑,达到最佳的教学效果。

加法结合律教案 篇4

北师大版

四年级数学

上册

滴水实验

教学目标:

1、设计滴水实验方案,经历观察、操作、记录、整理、描述和分享的过程,探索一个没拧紧的水龙头1年约浪费多少水。

2、根据实验数据,借助生活经验,解决实际问题,发展学生的推理能力和解决问题的能力。

3、在合作探究、动手操作中体会数学好玩、有用。培养学生 的科学精神和实践能力。

教学重点:设计具体的滴水实验方案。

教学难点:根据得到的实验数据,借助生活经验,推算并描述一个没拧紧的水龙头1年浪费多少水。

教学过程:

一、复习导入(约4分钟)

二、探究新知(约30分钟)

1、提出活动任务。(1)课件呈现任务。

(2)小组讨论方案设计:课堂上,较短时间内,设计什么实验,可以测出一定时间内滴水多少?1分钟怎么样:你们有什么实验方法?小组内议一议。(3)小组讨论交流。

2、设计活动方案。

(1)各小组汇报讨论的方案。

各小组汇报后梳理实验方案,提出实验要求。

需要哪些数据?怎样测量出这些数据?实验得有实验名称、测量工具、实验人员、实验分工、实验方法和步骤。

强调测量工具和实验分工。听老师说实验工具,学生 一样一样地摆好:每组纸杯1个,用针扎好眼,稍微扎圆一点,大一点; 每组1个水槽,注意取水时保持桌面干净; 带有刻度的量杯或水杯; 计时器、计算机各1个; 实验报告单1份。实验分工:1人操作,1人计时,1人记录,1人计算。(2)动手实验。

下发实验报告单,各小组按照实验方案进行实验,并填写实验报告。教师巡视指导。提醒计时员看准时间,要求记录员准确记录相关数据,填写实验报告。(3)交流反思。

全班交流并分享实验结果。请一次实验成功的小组谈谈是怎么做的,应注意些什么; 更要请两次至三次实验才成功的小组交流分享。

反思:为什么得到的数据会不一样?(扎孔的大小不一样,测量工具比如水杯太大,水面够不着刻度等等。)

根据得到的实验数据,回答教材第89页“交流反思”提出的问题。计算:1时、1天、1年会滴掉多少水?(用计算器)()×60×24×365=()

计算出结果,一般会对学生有很大的触动,想不到小小一个水龙头,一年会浪费这么多的水啊!

展示资料:没有拧紧的水龙头如果每分钟滴掉3克水,一个小时会滴掉180克水,一天会滴掉4320克水,一个月会滴掉129600克,一年滴水1576800克。每个人除正常饮食外,每天应该饮水1400克才能维持人体需要,一年滴掉的水可供一个人大约饮用1126天,也就是三年左右。

三、巩固拓展(约3分钟)

读一读,想一想。(第90页)我国是一个严重缺水的国家,是全球13个人均水资源最贫乏的国家之一。生活中有许多浪费水的现象,也有很多节约水的好方法,说几个听听,并说说自己的感想。

四、课堂小结

这节课,我们经历了设计方案、小组分工、得出数据、解决问题的过程。在这次活动中,你的表现怎样,对自己满意吗?请参照第90页“自我评价”栏,评价自己的表现吧。

加法结合律教案 篇5

四年级数学上册 教学设计

八里姜学校

李峰

教学内容:北师大版小学数学四年级上册第52-53页的内容。

教学目标:

1.经历加法结合律的探索过程,会用字母表示加法结合律,培养发现问题和提出问题的能力,积累数学活动经验。

2.能够运用加法交换律和结合律,对一些算式进行简便运算,体会计算方法的多样化,发 展数感。

教学重点:

能够运用加法交换律和结合律,对一些算式进行简便运算。

教学难点:

经历加法结合律的探索过程,会用字母表示加法结合律,培养发现问题和提出问题的能力。

教材分析:

本节课的内容是加法结合律以及运用加法结合律进行简便运算教科书在内容的编排和问题串的设计上与交换律的呈现模式相同:第一个问题让学生观察算式、发现问题,并尝试提出问题;第二个问题让学生举出事例解释所发现的运算律;第三个问题让学生用字母表示所现的加法结合律;第四个问题根据运算律进行简便、合理的运算。教学方法:

本节课主要采用观察法、举例法、归纳法等教学方法,动

手实践、自主探索、合作交流是学生重要的学习方式。

教学过程:

一、创设情境,导入新课

师:你们平时玩过“找不同”的游戏吗?这节课我们就来玩一玩,比一比谁的眼力好?出示PPT,请你们仔细看这两幅图,哪儿不同?

设计意图:

以玩游戏的形式导入新课,可以激发学生学习数学的兴趣,同时很自然地将学生的注意力转移到课堂上来。)

二、合作学习,探究新知:

师:同学们的眼力都还不错,再来看看这两组算式。每组中的两个算式有什么相同和不同的地方?为什么可以把两个算式用等号连接起来呢?

师:你们还能照样子另外写出一组吗?学生写完算式后,交给小组长检查,然后指名其中的小组长进行汇报交流仿写的算式。板书具有代表性的例子。

请观察这几组算式,谁来说一说你发现了什么?

(三个数相加,先把前面两个数相加,再加上第三个数所得的和,与先把后面两个数相再加上第一个数的所得的和是相等的。)

三、自主质疑,展示分享:

师:请你们任意选择一组算式,用生活中的例子来解释一下你们的发现是否正确?看来,你们发现的规律在我们的生活中是客观存在的。具有这样规律的算式多不多?全部用数字来写,写得完吗?用什么来代替数字就能写完了?

请你们用字母a、b、c代表三个数,写出刚才发现的规律。

(a+b)+c=a+(b+c),这就是加法结合律。

在前面我们学习了加法交换律,想一想加法交换律与加法结合律有什么相同和不同的地方?

四、反馈练习,落实应用:

1、出示怎样计算简便?想一想,算一算。

57+288+43=

让学生独立计算,然后让学生说一说是怎样想的?

2、练一练:

第1题鼓励学生结合具体的客观存在,感受运算律现实生活的密切联系。

第2题侧重让学生体会算式的等值变形。

第3题让学生独立完成,全班交流算法,提高运算能力。

第 4题是对加法结合律的拓展应用,体会运算律的广泛性。

第5题不强求所有的学生掌握。

五、课堂小结:说一说,这节课你学会了什么?

板书设计:

加法结合律

学生说出的几组算式

(a+b)+c=a+(b+c)

教学反思:

本节课是在学生学习了加法交换律和乘法交换律之后,对运算规律进行再度探索,因此在设计本课教学时直接让学生计算教材呈现的式题,让学生根据前面的学习经验,自然得出结论,从而总结出加法结合律。教学中,教师注重使用诱导性的语言,激发学生的学习积极性,帮助学生在自主探索和合作交流中真正理解掌握规律,使学生在探索数学运算规律方面不断积累经验并进一步提高他们的探索意识和能力。但反思这一节课也发现了一些问题:学生在初次使用自己的语言描述加法结合律时,表达得不够严谨,教师没有及时补救这种生成问题,将自己的想法强加给学生,在无形中缩小了学生探索的空间,在今后的教学中应努力改正。

加法结合律教案 篇6

课题:加法交换律和加法结合律授课教师:陈常秀 年级:四年级教学方法:主动探究法 教学目标:

1、使学生探索加法运算律的过程,理解并掌握加法的交换律和结合律,并初步感知加

法运算律的价值,发展运用意识。

2、学会用字母表示运算律,初步培养符号感和归纳、推理的能力。

3、在数学活动中,增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

教学重难点:

理解并掌握运算律,并进行运算。教学方法:主动探索法 教学用具:挂图、卡片 教学过程:

一、情景导入

1、谈话:同学们喜欢玩吗?玩什么?(师生做游戏进入新课)

2、出示情景图,仔细看图,读懂图中的信息。(1)同桌间说信息,提加法问题。

(2)展示学习成果(师相机贴出问题卡)(3)教师小结进入课题并板书:加法运算律

二、探索加法交换律

1、解决问题“跳绳的有多少人?”(1)学生自练,展示学习成果。(指两名用不同方法计算的同学展示)(2)说说自己的发现。(同桌交流,展示)(3)师小结并板书28+17=17+28

(4)让学生举例(自练)展示教师相机板书

2、讨论交流:

A每组中的两个算式的异同。

B这几组算式是不是都具有这样的特点?

C说说自己发现的规律。(用自己的话或用自己喜欢的方式表示)D用字母a、b表示两个加数,怎样表示?(师生交流总结并板书)E a+b=b+a(说说字母各表示什么?)

3、练习

357+218(计算并验算)

三、探索加法结合律

(1)出示问题二“参加活动的一共有多少人?”(学生自己练习,师巡视指用不同方法

计算的同学上台板演)

(2)让学生观察比较得出结果,师板书:(28+17)+23=28+(17+23)

交流自己的发现

(3)出示两组算式,观察并探索其中的规律。

用学习例1的方法总结出加法结合律,说说其中的字母及识字的含义。

四、巩固理解运算律

卡片出示课后“想想做做”中的练习题(自练,指名说)(同桌交流,展示)

五、总结提高

1、这节课我们学习了加法的哪两个运算律?说说自己的收获。

2、教师小结:

加法交换律和加法结合率都是加法运算中存在的规律,涉及到的数都是加数。加法交换率涉及到的加数只是交换了位置,和不变;加法结合率涉及到的加数位置不变,只是改变了运算顺序,和也不变。

六、布置作业

完成课后未完成的题目 板书

运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

Gz85.Com小编推荐

加法结合律教案精品


资料的定义比较广,可以指生活学习资料。不管我们是学习,还是工作中,都需要寻找一些资料。参考资料可以促进我们的学习工作效率的提升。可是你知不知道我们国家的资料有哪些呢?小编现在推荐你阅读一下加法结合律教案精品,欢迎阅读,希望你能喜欢!

加法结合律教案(篇1)

《加法结合律》教学设计

新昌县南岩小学 盛国阳

一、教学内容:

人教版小学四年级数学下册29页的例2《加法结合律》。

二、教材分析:

本节课,教材从学生熟悉的实际问题的引入,采用了不完全归纳法,通过观察、比较和分析、推理等途径引导学生找到实际问题不同解法之间的异同联系,自主发现并验证、归纳加法结合律,感受运算规律作用。教材有意识地让学生运用已有经验,经历运算律的发现过程,使学生在合作与交流中,对运算律的认识有感性逐步发展到理性,合理地建构知识。为此,本人在把握教材意图的基础上,用好教材,并合理的对部分学习活动过程作创新处理,努力使教学活动更具自主性、探究性、趣味性。

三、学生分析:

学生已经学习了加法的交换律,在此基础上,来学习加法结合律难度不太大。学生通过观察讨论,在教师的引导下应该能推导出加法结合律。在应用运算定律时,学生容易把加法交换律和加法结合律混淆,这里要加以区分两者的不同。

三、教学处理

依据对教材与学生学习状况的分析,教学本课时应在学生对运算规律有所了解的基础上,借助数学知识的现实原型,调动学生的生活经验,帮助学生理解所学运算定律,构建个性化的知识意义,进而,凭借知识意义的理解,运用于所学运算定律。

四、教学目标

1.理解和掌握加法结合律,并应用加法结合律使计算简便。2.培养观察、归纳、概括的能力。

3.进行“具体问题具体分析”的辩证唯物主义教育。

教学重点:理解并掌握加法结合律。

教学难点:加法结合律的推导。

教学准备:A、B两组题的卡片,小黑板。

教学设想:

本节课以“三八国际妇女节”为背景,从花店进花的情境引出新知,求李叔叔三次进货的总数。教学时让学生看PPT插图叙述图意。理解了题意,并搞清了条件和问题之后,可以放手让学生自己列出算式计算。通常,会有学生按顺序计算,也会有学生发现后两个加数能凑成整百数,所以先相加。引导学生比较两种算法,得出先把两个数相加,与先把后两个数相加,结果相同,都是这三进货的总数,所以可以用等号把这两个算式连起来。接着,让学生观察比较教材提供的另两组算式,当然也可以让学生自己编出像例题这样的例子,再观察、比较。然后让学生用自己喜欢的方法表示规律,而不是像过去那样,统一用字母来表示。这样编排,一方面有利于符号的培养,且方便记忆;另一方面提高了知识的抽象概括程度,也为以后正式教学用字母表示数打下初步的基础。

五、教学过程:

(一)复习导入

1.复习。

⑴提问:什么叫做加法交换律?用字母如何表示?

⑵根据运算定律在下面的()里填上恰当的数。

20+34=()+()

36+()=64+()a+100=()+()115+15=()+()⑶下面各等式哪些符合加法交换律?

①45+58=58+45()②60+80+40=60+40+80()

③230+370=300+300()

③48+b=b+48()

2.师:上节课我们学习了加法交换律,并运用它解决了一些问题,那么关于加法还有没有其他规律性知识?这些知识又有什么用途呢?这节课我们继续学习这方面的知识。

二、新授

1.让学生质疑。

看谁算得对又快。(分组比赛,要求按运算顺序算)

A组

B组

⑴(27+35)+65

⑴27+(35+65)

⑵47+2+8

⑵47+(2+8)

⑶64+(36+27)

⑶(64+36)+27 ⑷125+237+75

⑷125+75+237 先强调有小括号的运算顺序,分两大组比赛,并订正结果。

提问:为什么B组同学算得又对又快?下面我们来研究一下。

2、学习新知。

师:同学们,老师先问大家一个问题,你们知道明天是什么日子吗? 师:三八妇女节是属于我们每一个同学妈妈的节日,你会送什么礼物呢?

师:不管送什么,只要大家有一份感恩的心就可以了。刚才我们谈到了花,对呀!节日到花店的老板可乐坏了,我们一起来看看这家花店,李叔叔为了迎接三八国际妇女节大到来,早早就采购了一些康乃馨,第一次采购了88朵,第二次采购了104朵,第三次采购了96朵,请问同学们李叔叔三次一共采购了多少朵康乃馨?

⑴PPT出示例题,提出问题。

⑵理解题意。

①教师读题。

②了解题中所给信息和所要解决的问题。

⑶尝试解答。

①这道题是已知什么信息,需要解决什么问题?

②通过看图可以看出先算什么,再算什么?(先算出第一次、第二次采购的康乃馨数量和,再加上第三次采购的康乃馨数量。)谁是这样算的,你是怎样列式的? 板书:(88+104)+96=288(朵)

③还有不同算法吗?(先算出第二次、第三次采购的康乃馨数量和,再加上第一次采购的康乃馨数量。)

板书:88+(104+96)=288(朵)、104+96+88=288(朵)

④为什么104+96要加小括号?(表明要先算第二次和第三次采购的康乃馨数量和)

⑸观察上面两个算式,想一想这两个算式有什么相同点和不同点。

相同点:计算结果相同。

不同点:运算顺序不同。

这两个算式有什么关系?(相等)可以用什么符号表示这两个算式的结果相同?(可以用等号把两个加法算式连起来)

板书:(88+104)+96=88+(104+96)这个等式如果用文字叙述,可以这样说:88与104的和加上96,等于88加上104与96的和。

⑹想一想:(88+104)+96=88+(104+96)为什么可以这样写?(因为无论是先把88和104相加,再加96,还是先把104与96相加,再加88,它们的得数都是一样的,也就是和不变。)

⑺比较发现。

教师板书:

(69+172)+128○69+(172+28)155+(145+207)○(155+145)+207 比较上面这两组算式,你发现了什么?

①算一算:每组两个算式的结果怎样?(相等)用什么符号连接?(等号)每组等式说明什么?

②观察:每组有几个算式?(2个)每组算式有几个数相加?(3个)每组两个算式有什么不同?(运算顺序不同)这两个等式有什么共同点?(每个等式中,每组算式有3个加数,每个等式中的加数都一样。)每组两个算式变了,什么没有变?(和没有变)

③请同学说一说每组两个算式的运算关系。

⑻归纳概括。

教师投影出示填空内容,学生思考后填完整。

三个数相加,先把()相加,再同()相加;或者先把()相加,再同()相加,它们的()不变,这叫做加法结合律。

填完后,学生齐读,理解后记忆。

⑼抽象概括。

请大家用喜欢的符号来表示一下加法的结合律。

如果用字母a、b、c分别表示3个加数,怎样用字母表示加法结合律呢?

老师板书:(a+b)+c=a+(b+c)

等号左边(a+b)+c表示先把前两上数相加,再同第三个数相加。

等号右边a+(b+c)表示先把后两个数相加,再同第一个数相加。

想一想:a、b、c表示的数是什么范围的数? 学生讨论,然后回答。(a、b、c可以表示整数、小数、分数,即任意数)

三、巩固拓展

1.根据运算定律,在下面的□里面填上适当的数。

⑴278+129+118=287+(□+118)

⑵(32+47)+65=32+(□+□)

⑶183+(46+a)=(183+□)+□

⑷(75+36)+64=75+(□+□)

⑸230+(170+82)=(230+□)+□ 2.在符合加法结合律的等式后面画“√”。

⑴a+(30+5)=(a+30)+5()

⑵△+(□+○)=(△+□)+○()

⑶(10+20)+30+40=(10+40)+(20+30)()

⑷(a+b)+c=a+(b+e)()

3.用简便方法计算下面各题。

⑴120+653+47 ⑵412+35+65 4.灵机一动。

同学们,你们听过被誉为“数学之王”的德国数学家高斯的故事吗?高斯小时候聪明过人。在上小学时,有一天数学老师出了一道题让同学们计算: 1+2+3+„+98+99+100=?

老师出完题后,全班同学都埋头苦算,小高斯却很地把答案写在石板上,交给了老师。教师谯这个年仅10岁的学生一定是瞎写了一个答案,连看也没看一眼。过了很长时间,当同学们陆陆续续地把写有答案的石板交上来时,老师才不经意地把目光转身了高斯的答案板,使老师吃惊的是小高斯的答案是5050,完全正确。高斯为什么算得又快又对呢?同学们,你们知道吗?他的钥匙奥秘是什么呢?你也来当当小高斯,运用所学知识进行解答吧 指导学生先整理思路,再集体交流。

方法一:1+2+3+„„+98+99+100=5050 共有50个101。

方法二:1+2+3+„„+50+„„+97+98+99+100=5050 共有50个100,再加中间的50。

五、课堂小结

这节课我们学习了加法结合律,运用加法结合律可以使计算简便,它对于们今后的学习生活有很大的帮助,希望同学们在理解的基础上切实掌握、运用好它。

六、教学反思:

运算定律是运算体系中有普遍意义的规律,是运算的基本性质。学生在前面的学习中,已经接触到了反映加法运算定律的大量例子,特别是对于加法的可交换性、可结合性,这些经验构成了学习本节课知识的认知基础。

对于小学生来说,运算定律的运用为培养和发展学生思维的灵活性提供了极好的机会,本节课,我依据“引导学生在经历知识的形成过程中,提升学生的思维能力”这一课题,设计并实施教学,纵观本节课,我认为有以下几个特点:

1、在复习引入中,巩固学生的思维基础。

由于四年级学生的认知和思维水平较低,抽象思维比较弱,对于他们来说,规律的理解,历来都是教学的难点,教学伊始,通过提问“什么是加法交换律?怎样用字母表示”唤起学生已有的知识经验,为学习新知打下良好的思维基础。

2、自主探究中,遵循认知规律,训练学生思维发展。

英国教育家斯宾塞说过:“应引导学生进行探究,自主去推论,对他们讲的应该尽量少些,而引导让他们说出自己的发现应该尽量多一些。”基于我班同学思维基础,教学时,我遵循由个别到一般,由具体到抽象的认知过程。通过观察算式88+104+96的两种算法,引导学生初步发现三个数相加,先把前两个数相加或者先把后两个数相加,和不变的特点。接着通过对几组等式的观察,进一步验证这一定律。培养了学生抽象概括能力。通过观察——推理——验证——总结这一思维训练过程,使学生在经历知识的形成过程中,思维得到了有效训练与发展。在学生发现理解了加法结合律后,又通过让学生用自己喜欢的方式表示加法结合律,培养了学生的符号感。

3、多层次的巩固练习,有效提升了学生的思维。

习题设计则能有效促进学生的思维发展。本节课的练习题,由基本习题、根据运算定律填空使学生在运用运算定律的过程中,对定律有了更进一步的理解;通过辨析题“判断哪些等式用上了加法结合律”培养了学生思维的灵活性,明确了“加法结合律”的特点,最后通过思维训练题,探索小高斯解题奥秘,进一步提升了学生的思维。不足:

1、教学中对“加法结合律”可以使计算简便渗透不到位。再教学时,我会对“加法结合律”的简便作用在课中适当渗透。

2、对大多数学生语言表达的培养还需要加强。

3、下次教学时,最后一道判断题和探索小高斯解题奥秘题换一下位置,就更能符合学生的认知规律了。

加法结合律教案(篇2)

教材简析:

加法结合律这部分内容是在加法意义的基础上进行教学的,是继加法交换律之后的加法第二个运算定律,学好加法结合律,对于加法的简便运算,提高计算速度和准确程度很有帮助。

教学目的:

1.使学生理解和掌握加法结合律,并应用结合律使计算简便。

2.培养学生观察、归纳、概括能力以及思维灵活性。

3.对学生进行“具体问题具体分析”的辨证唯物主义的教育。

1、导入课题:口算下面两题50+70+30 240+105+95

说说你是怎样算的,针对先算70+30和105+95提出质疑:这样算对吗?有什么依据吗?这节课我们就来学习加法结合律。板书课题:加法结合律

3、效果预期:关于加法计算,我们已经有了那么多的经验,这些经验能帮助我们很好的认识加法结合律。

1、任务呈现:

(1)、出示例2主题图,学生说图上的信息并提问,学生对提出的题进行解答,师引导学生研究问题“这三天一共骑了多少千米?”请学生自己尝试列式,并想想为什么这样列式,教师巡视指导。学生回答,教师有意识地板书,并说出自己的想法。

(88+104)+96=288(千米) 88+(104+96) 88+104+96 104+96+88

再针对这两个算式开展研究:(88+104)+96 88+(104+96)

通过这两个式子,你作什么猜想?怎样证明你的`想法?

说说你有什么猜想?怎样证明你的想法?

学生自己归纳出“三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。”

任务二、能用符号表示加法结合律。

3、展示交流:展示学生的各种表示方法,重点介绍图形表示法和字母表示法。

任务三、会运用加法结合律进行简便计算。

出示题组,请学生独立完成。

A、用简便方法计算下面各题。

B、你能在( )里填上合适的数吗?

560+(140+70)=( + )+

1、出示检测题,要求8分钟内独立完成。

①、你能在横线上填出合适的数吗?

560+(140+70)=(560+□)+□

②、你能把得数相同的算式连一连吗?

2、出示正确答案,同桌互相检查,指出其中的错误并改正。

3、反思总结:你有什么新的收获?有什么想和大家交流一下吗?

让学生回顾今天所学的内容,并将其内化为自己的知识。

加法结合律教案(篇3)

学习内容:人教版义务教育课程标准实验教科书四年级下册数学第29 页例2 《加法结合律》。

教材分析:例2 是通过解决实际问题来总结结合律。并且可以用加法运算定律进行简便计算。例2 采用图画表示题意,教材在分析学生解决问题的两种算法中,可以得出加法结合律。

学情分析:例2 教学时放手让学生自主合作学习,通过观察比较得出加法结合律。

2 、准确地运用两种运算定律进行简便运算。

3 、培养学生观察能力、概括能力和语言表达能力。

2 、在解决实际问题中体会两种运算定律的作用。

二、 知识链接:69 + 27 =( )+( ) 155 +45 =+()

三、 情境导入:

同学们你们还记得上节课我们学过的李叔叔骑自行车旅行的事吗?这节课我们一起来看看李叔叔在旅行途中遇到哪些问题?这三天一共骑了多少米?请看小黑板。(出示小黑板)

请同学们仔细读题、理解题意,想办法解决这道数学问题,小组内交流算法,看哪个小组想出的办法多。

2、 自主学习:

认真思考独立解决,写在练习本上。

3、 合作交流:

小组长组织组员交流自主学习收获,总结解决问题的几种方法。

4、 展示辅导:

个小组推荐成员向大家展示本组学习成果,师辅导对新知的认识。()(教师板书算式)比较下面两组算式,你会有什么发现?(小黑板出示)155 +(145 +207 )()(155 + 145 )+207

(49 + 172 )+ 28 ()49 +(172 +28 )

五、自主检测:

1、 明确自学内容:425 + 14 + 18675 + 168 +125

4、 运用规律独立写算式25 +49 +75 =()+()+()

六、交流收获:

1 、通过本节课的学习你有什么收获?

2 、同学们准确地算出了李叔叔三天一共骑了多少千米?看来,学习数学真的很有用,可以帮助我们解决生活中的问题,以后,我们要更加努力,学好数学,正当小数学家。

加法结合律教案(篇4)

《加法结合律》教学设计

教学内容:教材2—3页

教学目标:

知识与技能:

理解并掌握加法结合律,并能够用字母表示,初步感受应用加法结合律可以使一些计算简便,发展应用意识。

过程与方法:

经历探索加法结合律的过程,发展学生的分析、比较、抽象、概括能力,渗透符号意识。

情感态度价值观:

感受数的运算与日常生活的密切联系,获得探究的乐趣和成功的体验,初步形成独立思考、合作交流的意识和习惯。

教学重、难点:经历运算律的探索过程,发现规律,概括规律

教学准备:

教学过程:

一、激情导入、导入题:口算下面两题0+70+30

240+10+9

说说你是怎样算的,针对先算70+30和10+9提出质疑:这样算对吗?有什么依据吗?这节我们就来学习加法结合律。

板书题:加法结合律

2、明确目标:出示学习目标,齐读一次。

3、效果预期:关于加法计算,我们已经有了那么多的经验,这些经验能帮助我们很好的认识加法结合律。

二、民主导学

任务

一、认识加法结合律

、任务呈现:

(1)、出示算式

+96=288

88+(104+96)=288(千米)

再针对这两个算式开展研究:+96

88+(104+96)

(2)、猜一猜:这两个式子相等吗?怎样证明?

观察思考:比较两个算式,什么变了?什么没变?

通过这两个式子,你作什么猜想?怎样证明你的想法?

2、自主学习

小组合作探究,按照任务要求认真完成。

3、展示交流,说说你有什么猜想?怎样证明你的想法?

学生自己归纳出“三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。”

任务

二、能用符号表示加法结合律。、任务呈现:你会用符号表示加法结合律吗?

2、自主学习:独立完成。

3、展示交流:展示学生的各种表示方法,重点介绍图形表示法和字母表示法。

任务

三、会运用加法结合律进行简便计算。

、任务呈现:你会用加法结合律进行简便计算吗?

出示题组,请学生独立完成。

A、用简便方法计算下面各题。

(1)32+93+68

(2)14+46+79+121

B、你能在()里填上合适的数吗?

60+(140+70)=(+)+

()

2、自主学习:独立完成。

3、展示交流。

三、检测导结、出示检测题,要求8分钟内独立完成。

①、你能在横线上填出合适的数吗?

(4+36)+64=4+(36+□)

(72+20)+□=72+(20+8)

60+(140+70)=(60+□)+□

②、你能把得数相同的算式连一连吗?

⑴72+16

A、(7+2)+48

⑵4+(88+12)

B、16+72

⑶7+(48+2)

、(4+88)+12

2、出示正确答案,同桌互相检查,指出其中的错误并改正。

3、反思总结:你有什么新的收获?有什么想和大家交流一下吗?

让学生回顾今天所学的内容,并将其内化为自己的知识。

四、板书设计:

加法结合律

+96

88+(104+96)

=192+96

=88+200

=288

=288

+96=88+(104+96)

+=a+

加法结合律教案(篇5)

教学目标:

1.理解和掌握加法结合律,并应用加法结合律使计算简便。

2.培养观察、归纳、概括的潜力。

教学重点:

理解并掌握加法结合律。

教学难点:

加法结合律的'推导。

教学过程:

一、复习导入

20+34=()+()

36+()=64+()

A+700=+

二、新授

1、出示准备题:

37+26+63、37+(26+63)

59+38+732和59+(38+732)

讨论:比较两式题的异同。刚才的两个例子说明了什么?

2、上述两题贴合猜想,可能是偶然。请同学们自己来找一找贴合猜想的式题。

(学生自由举例,小组交流结果。汇报结果,找到许多式题贴合猜想。

3、能证明猜想正确,还有我们身边的一些生活实例。

请同学们用多种方法解决问题:李叔叔骑车旅行第一天骑了88千米,第二天骑了104千米,第三天骑了96千米,这三天李叔叔一共骑了多少千米?

三、小组展示

1.学生先汇报

A、口头列式:

(88+104)+96

88+(104+96)

B、分别说说先求什么,再求什么?

C、决定,得数会相同吗?(相同)

D、计算结果。得出(88+104)+96=88+(104+96)

2.提问:以上几个加法算式中,每个算式等号的左边和右边有什么相同和不同的地方?

3.用字母表示加法结合律。

(1)谁能用符号(任意选3个符号)表示加法结合律?如:(□+△)+○=□+(△+○)

(2)如果用字母a、b、c分别表示3个加数,怎样表示加法的结合律呢?

三、练习

1.下面哪些等式贴合加法结合律?

a+(20+9)=(a+20)+9

15+(7+b)=(20+2)+b

(10+20)+30+40=10+(20+30)+40

2.简便计算。

273+352+648

64+36+81+19

3.五(1)班有学生51人,四(1)班有学生47人,四(2)班有学生41人,三个班共有学生多少人?(用两种方法解答)

板书设计:

加法结合律

37+26+63=37+(26+63)

59+38+732=59+(38+732)

(88+104)+96

88+(104+96)

加法结合律:(a+b)+c=a+(b+c)

加法结合律教案(篇6)

教学目标:

1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。

2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

教学重点:

让学生在探索中经历运算律的发现过程,理解不同算式间的相等关系,发现规律,概括运算律。

是不是所有的加法算式,加数交换位置以后,结果都相等呢?

图示:

图中的小朋友在干什么?从图中你了解到了什么?能提出数学问题吗?我们选择一个:跳绳的有多少人?

教师小结:类似这样的`等式能写完吗?虽然咱们写出的等式各不相同,但是仔细观察,它们却蕴藏着共同的规律,那就是——交换加数的位置,和不变,这就叫做加法交换律。

教师:在数学上,我们通常用字母a和b来表示两个加数,那么,加法交换律可以写成:a+b=b+a。

加法交换律是我们的老朋友了,想一想,什么时候曾经用过它?

加法验算,交换两个加数的位置再加一遍就是运用了加法交换律。

出示例题:回到操场,刚才是跳绳的同学,现在有什么变化?(屏示:23个踢毽子的女同学)

学生独立完成,要求列出综合算式。

展示(选择有代表性的几种进行展示):

思考,如果不使用加法交换律调整加数的位置,有没有办法先计算17+23呢?

指明一位学生板演。

3、猜测规律,举例验证。

这个发现,会不会仅仅是一种巧合呢?如果换成其他的三个数相加,左右两边的得数还会相同吗?你能不能再举些例子来验证?同桌互相验证,全班汇报。

学生观察,教师提问:计算28+17+23,按照四则运算法则,应该先算什么?(指明学生回答)

继续提问:可是我们发现,先算17+23,可以得到一个整十数,再跟28相加,计算就会简便的多,所以我们选择先把后两个数相加,这样的话,结果会不会改变呢?

归纳小结:先把前两个数相加,或者先把后两个数相加,结果不变,这就叫做加法结合律。

你能在方框内填出合适的数吗?

560+(140+70)=(560+)+

1、你能把得数相同的算式连一连吗?

水果店运进四筐苹果,分别重45千克、63千克、37千克、55千克,水果店这次一共运进多少千克苹果?

原来巧用运算律还能使一些计算更简便呢!这就是我们下一节课继续研究!

加法结合律教案(篇7)

1.认识平行线,初步了解平行线的性质,学会用直尺和三角板画平行线.

2.培养学生操作的初步技能.

3.渗透分类的思想,透过现象看本质的观点.

1.理解“同一平面”.

一、导入新课.

1.教师谈话:前面我们学习了两条直线互相垂直的位置关系.这节课我们继续研究同一平面内两条直线的位置关系.(板书:同一平面  两条直线)

2.学生摆小棒.

利用手里的小棒,每根小棒代表一条直线,每两根为一组,请你用这些小棒摆一摆,看看在同一平面内两条直线的位置关系你能摆出几种情况.两个同学一组可以互相合作、互相商量.

二、探究新知.

(一)教学平行线的概念.

1.出示下列图形.

2.讨论:你能根据它们的位置关系给它们分分类吗?说出分类的理由.

3.持不同分类方法的同学进行辩论.

4.教师小结:表面上看起来不相交,如果把两条直线无限延长后相交于一点,看来今后不能先看表面现象,要看到其实质.

5.教师讲解:

这两组直线表面不相交,延长后也不相交,这才是真正的不相交,这就是我们今天学习的平行线.(板书课题:平行线)

7.教师出示长方体:

9.播放视频“平行线举例”.

(二)教学平行线的性质.

1.出示图形:

教师提问:你们所说的宽度是指哪一条线段?(板书:平行线间的距离)

2.教师小结:两条平行线间的距离处处相等,这是平行线的一个重要性质,这一特性在生活中有广泛的应用.

3.实践操作.

(1)利用若干小棒摆,变换不同位置、方向,使它们互相平行.

(2)小组合作:利用两根皮筋,使它们互相平行、两个小组合作,使其两两平行.

三、画平行线.

1.学生自学:平行线的画法(见第133页),并尝试画出一组平行线.

2.演示视频“平行线画法”.

四、质疑小结.

1.让学生看书并提出疑问,组织学生解疑.

小结:①定义:在同一平面内,不相交的两条直线叫做平行线.

五、布置作业.

完成第134页第1题.

检验下面的各组直线,哪组是平行线,哪组不是平行线?

完成第134页第2题.

检验下面每个图形中哪两条线段是平行的.

完成P134页第3题.

用直尺和三角板在练习本上画两条平行线.

4.判断.

六、拓展练习.

和1号棱平行的有哪些棱?还有哪些棱互相平行?

按老师要求摆长方形或正方形,看谁摆的快、规范.

加法交换律教案收藏


资料的意义非常的广泛,可以指需要查到某样东西所需要的素材。无论是生活中,还是工作中,我们都有可能需要用到资料。有了资料才能更好的在接下来的工作轻装上阵!所以,你有哪些值得推荐的资料内容呢?小编特别编辑了“加法交换律教案收藏”,强烈建议你能收藏本页以方便阅读!

加法交换律教案 篇1

要求学生回忆一下上一节课学过的乘法的运算规律。

(我们上节课学习了《乘法交换律和乘法结合律》,那么,大家回忆一下,乘法交换律和乘法结合律的公式又是什么呢?)

1、由生活引入,通过对话的形式与学生共同探讨交换的含义。

数一数:本班男生的人数和本班女生的.人数,求本班一共有多少人?

结果无论哪一种计算方法,计算出来的结果都是相等的。

让学生列出不同的算式,分析比较两个算式的共同点和不同点。

突出强调“交换”的意思。结果表明:两个式子的加数交换了位置,但和不变。再要求学生自己举一两个例子来试试看。

2、出示题目:同学们的课间活动很丰富,看,有28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子,参加活动的一共有多少人?

方法一:先算跳绳的一共有多少人:28+17人,再算全部的人数:(28+17)+23人。

方法二:先算一下女生,再算一下他们加起来一共是多少人:28+(17+23)人。

结果表明,计算出来的结果都是相等的。

3、再举书本中的例子来说明结合的两个数的条件和原因。

=(50+40)+(7+9)因为50+40=90,90是一个整十数。

三、巩固练习,加深记忆。

1、书本P47(3)利用你发现的规律,计算下列各式。

四、布置作业。

五、板书设置。

加法交换律教案 篇2

加法结合律和加法交换律 教学设计

山东省潍坊市于河街办实验小学王增武

教案背景1,面向学生:全体学生

2,学科:数学 2,课时:1

3,学生课前准备:

(1)课前预习了解

(2)完成课后习题

教学内容义务教育课程标准实验教材青岛版小学数学四年级下册p13

教材简析本节课的教学是通过引导学生阅读分析图片,提取数学信息,提出并解决问题,展开对加法结合律的学习。让学生在解决问题的过程中理解并掌握加法结合律和加法交换律及减法的运算性质,并能用字母表示,能够运用所学的运算定律进行简算。

学情分析本单元是在学生已学习了整数加、减、乘、除四则运算的基础上进行学习的。它是今后进一步学习小数、分数加减法的简便运算

教学目标

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。

2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

教学重点:师学生理解和掌握加法交换律和结合律,能正确地用字母或符号来表示这两 个运算定律。

教学难点:经历探索加法交换和律结合律的过程,发现并概括出运算定律。教学方法: 自主、合作、探究

教学准备:课件等。

教学过程第1课时

一、师生合作,探索加法结合律

1.创设情境,解决问题。

(1)谈话:这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?你想不想再多了解一些?出示课件:请同学们仔细观察,你能从中获得了哪些数学信息

(2)你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。

(3)同学们提出了这么多有价值的问题,请你选择自己感兴趣的问题,根据相应的信息解决在练习本上。

(4)小组讨论

(5)每组出一名同学汇报:

问题一:黄河流域的面积是多少万平方千米?

学生在列式解答时,可能会出现两种情况:

a、39+34+2和34+2+39。

b、(39+34)+2和39+(34+2)。

问题二:黄河全长多少千米?

学生可能出的情况:

a、3472+1206+786和1206+786+3472

b、(3472+1206)+786和3472+(1206+786)。

2.观察、比较、发现规律

观察这些算式,你们发现了什么?

谈话:是不是所有的三个数相加都符合这些规律呢?下面请大家用“大胆猜想——举例验证——发现规律”的方法,小组合作交流。

屏幕出示:思考讨论。

(1)你发现了什么规律?试着举例验证自己发现的规律。

(2)把你的发现和小组内其他同学交流。

(3)你们的发现一样吗?

(4)谁愿意把你的发现告诉大家?三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。

(5)你能试着用含有字母的等式表示这条规律吗?

板书:(a+b)+c=a+(b+c)

师指出这条规律叫做加法结合律。谁能用自己的话说说算式表示的意思。

小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

二、学法迁移,探索加法交换律。

那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

1.游戏:找朋友。

(1)在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

(2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?

同学们你们为什么认为它们是一对算式好朋友呢?(因为它们的得数相同)

(3)观察比较:

请同学们再仔细这几组等式,你又有什么发现?(等号两边算式的加数相同,得到的和是

一3样的,只是加数的位置变了。)

这是加法的另一个规律----加法交换律。(板书)

(4)你能用简便的方法表示出这个运算律吗?(a+b=b+a)

其实加法交换律我们早就会用了,想想看,什么时候我们用过?(在验算加法的时候)谁能结合这个字母算式在说说什么是加法交换律?

这节课我们通过解决问题,发现并认识了两个运算律:加法结合律(a+b)+c=a+(b+c)和加法交换律a+b=b+a。那么,学习这些运算律有什么作用呢,你能把它运用到实际的计算当中吗?下面我们就一起来试一试好吗?

2.试一试:

282+67+33126+235+174

订正时引导学生对比分析,那种计算方法更好,为什么?在计算得过程中,你都运用了哪些运算律,运用的目的是什么?使学生明确,正确使用运算律可以使计算简便。

三、巩固内化,拓展应用(课件)

同学们真棒,在计算得过程中不仅探索发现了加法的运算律,并能应用这些运算律解决实际的计算问题,下面我们一起来解决一些其他的问题。

1.自主练习第1题。学生独立完成,并让学生计算第三道题等号左右两边的算式,比较哪个计算简便?订正时让学生说说是根据什么填写的?

2.自主练习第2题。说说下面的等式是运用了什么运算律吗?

3.看谁算的对又快:382+28+72427+403+397270+560+730。。。

4.要使计算简便,方框中的数可以是那些?为什么?23+89+()()+14

8+5864+()+36+125

四、评价鼓励,全课总结

今天这节课,你都有哪些收获?

回去后动脑筋想一想,加法中有运算律,减法中会不会也有这样的运算律呢?你能不能用今天学习的发现规律的方法探究减法运算中的运算律?

课后反思充分利用教材所提供的情景,让学生在真实的情景中探索学习。通过对我国第二大河---黄河的分析了解,首先让学生亲切的感觉到知识就在我们的身边,进一步明确数学来源于生活的道理。教学中,通过真实数据的展示,将“保护母亲河行动”与数学学习融为了一体,既能把抽象问题具体化,又有利于调动学生学习的积极性。激发了学生自主探究、合作学习的兴趣。

附:板书设计

加法结合律(a+b)+c=a+(b+c)

观察:(39+34)+2=39+(34+2)

(3472+1206)+786= 3472+(1206+786)

验证:(325+82)+18=325+(82+18)

(3470+1210)+790=3470+(1210+790)

······

结论:(a+b)+c=a+(b+c)

加法交换律a+b=b+a34+2=2+343470+1210=1210+347012+31=31+1278+96=96+78······a+b=b+a

加法交换律教案 篇3

教学目的:

1、使学生在已学过的加法知识的基础上,理解并概括出加法的意义,对加法的认识从感性上升到理性。

2、进一步认识加法算式中各部分的名称及明确0在加法中的特殊性。

3、通过观察比较,理解并应用加法交换律,培养学生的初步归纳推理能力及应用能力。

4、在课堂中向学生灌输环保意识。

教学重点:掌握加法的交换律,理解加法的意义。

教学难点:加法意义的理解及概括。

教学用具:每位学生若干支笔(学生准备)、投影片、练习纸。

教学过程:

一、导入

今天同学们都把自己的笔按老师的要求准备好了,现在请同学们,数数自己的笔有多少支,然后把自己的笔都拿在手上。(学生活动)

现在请同学们把自己的笔和同桌的笔合并在一起,看看两个同学一共有多少支。(学生活动)

老师很想知道你们的两束笔合并成一束笔的结果,谁能告诉我?你能用一个数学算式来表示吗?(指名学生汇报,板书学生的算式)

同学们都用了加法算式来表示,那么这节课就让我们一起走进加法的天地,来了解加法的基本知识和规律。

(板书课题:加法的意义和运算定律)

二、新授

1、加法的意义的教学

(1)加法的意义

(出示例1及例1线段图)请同学们默读题目再在练习纸上解答,再想一想你为什么这样列算式?(学生解题)

(指名学生回答,板书学生的算式:137+357=494(千米)357+137=494(千米))

现在我们已经列了几个加法算式了,我们来观察算式,=左边的数称为什么?有几个?(加数,有两个)=右边的数称为什么?(和,有一个)

你能说说什么叫做加法吗?(小组讨论)

(学生汇报,得出并出示:把两个数合并成一个数的运算,叫做加法。)

反馈练习:(出示习题)列出算式,并应用加法的意义说说下面各题为什么要用加法算?

1、学校举办环保手抄报评比活动,三年级制作了47份,四年级制作了43份,三、四年级一共制作了手抄报多少份?

2、同学们为美化校园,低年级捐花67盆,高年级捐花85盆,全校共捐花多少盆?

(学生在练习纸上列算式,指名汇报)

(2)有关0的加法计算

(指导学生观察板书的算式)老师从这些算式中发现和都是比加数大的,那我就推想所有的加法算式中和都比加数大,谁能帮老师判断一下这个推想对吗?为什么?你能举出例子来吗?(板书例子:0+0=00+3=34+0=4)

原来老师的想法是错误的。从同学们举的例子我们又可以发现些什么呢?(小组讨论)

(学生汇报,得出并出示:任何数和0相加都得原数。)

2、加法交换律的教学

刚才我们在解答例1时,就有同学列出了两个算式,(指导学生观察算式)比较两种列法,137+357和357+137的计算结果是相等的,都是求北京到济南的铁路有多长,也就是说137+357=357+137。

出示:观察下面每组的两个算式,它们有什么样的关系?你能再举出几个这样的例子吗?

18+17〇17+18

124+235〇235+124

0+25〇25+0

(学生在练习纸上完成,指名学生汇报板书)

观察同学们举的这么多例子,你发现了什么呢?(小组讨论)

(学生汇报,得出并出示:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律。)

现在同学们都学习了加法交换律了,(出示题目)那来判断下面各等式运用了加法交换律吗?为什么?

9+7=7+9()10+1=10+1()

2+0=0+2()20+8=2+26()

谁能告诉老师要判断等式符不符合加法交换律,我们必须怎样来判断呢?(两个加数的位置变不变,和变不变,等号两边的两个加数必须相同)

用语言表述加法交换律比较麻烦,大家想一想怎样能把这一规律表示得既简单有清楚呢?(用字母表示可以做到这一点)

如果用字母a和字母b分别表示两个加数,怎样表示加法交换律呢?(指名学生回答,板书a+b=b+a)

说明:a和b可以表示0、1、2、3、......中的任意一个数,用a+b=b+a就可以表示任意两个数相加,交换加数的位置,和不变,比如a+b=b+a可以表示2+1=1+2、137+357=357+137、18+17=17+18等等。

我们学习掌握加法交换律,目的在于更好地运用,实际上,在以前我们早就应用它解决计算问题了。同学们想一想,在哪些计算中用到了加法交换律?(笔算加法的验算方法)

(出示)用交换加数位置再加一遍的方法验算下题结果。

7896+53267=61063()

7896验

+53267算

61063

(学生在练习纸上完成)

三、巩固练习(机动)

(学生在练习纸上完成)

四、小结

今天学的知识,哪些在你的脑海里留下了深刻的印象?说给其他同学听听。

加法交换律教案 篇4

教学内容: 教科书第56―57页的命题及58页的“想想做做”。 教学目标: 1、使学生经历探索加法去处律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算的价值,发展应用意识。 2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维的水平。 3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。 教学过程: 一、课前一分钟: 师:同学们,我们来玩个语言游戏好吗?老师说个词,你们把它倒过来说一遍,比如,我说“喜欢”,你们就说“欢喜”,会说吗? 好,现在开始:“千万”(生:万千);“语言”(生:言语)。很好,接着来,回答声音再响亮些!“好听”(生:听好);“好说”(生:说好);“好学”(生:学好)。(贴出) 师:好!这可都是你们自己说的哦!“听好!说好!学好!”老师希望大家在这节课的学习中都能做到这三点。 二、创设情境、探究例题 学习好,身体也要棒才行!为了增强体质,同学们都积极投入到体育锻炼中去。让我们去看看吧!(出示例题图) 从这张图片中,你获得了哪些数学信息? 你能根据这些信息,提出几个用加法计算的问题吗? 我们先来研究第一个问题:参加跳绳的一共有多少人? 你们能马上口头列式并口算出结果吗?还有其他的方法来解决吗? 这两道算式的得数相同,我们可以把这两道版式写成这样的等式。 (板书)28+17=17+28 2、引导发现,  提问:请大家认真观察,右边的算式和左边的算式相比较,有什么共同点,有什么不同点? 帮助学生发现交换加数位置,和不变。 3、验证 其它的式子有没有这样的规律呢?出示: 38+12○12+38 450+50○50+450 7000+0○0+7000 你们也能再写几个这样的等式吗?   指名读一下。 总结通过那么的例子可以证明这句话是对的,  4、个性创造,构建模型。 问:用语言表示这一规律要说一句很长的话,比较难记忆。你能不能自己喜欢的符号、图形或用字母把这个规律表示呢? 学生尝试用符号、图形或用字母来表示加法交换律,教师巡视,并选一些典型的进行板书。(学生可能有类似以下一些表示方法:√+×=×+√ ▲+■ =■ + ▲ 甲数+ 乙数=乙数+甲数 a+b=b+a 等) 小结:同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。 这就是加法的第一个运算律:加法交换律。板书:加法交换律。 6、联系旧知,简单应用。 这个规律其实是我们的老朋友了,你们记得以前在什么地方见过它吗? 小练习:计算并验算 690+174= 提问:怎么验算,根据什么运算律? 三、探索加法结合律 1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究第二个问题。看看我们有没有新的发现?读题。参加活动的一共有多少人?   学生列式计算,教师巡视。注意发现用不同的方法解答,并指名两人板演不同方法的算式,说说每个算式各是先算什么。 2、让学生观察和比较两个不同算式的计算结果。说明由于两个算式的结果相同,所以可以写成等式。板书。 (28+17)+23=28+(17+23) 3、提问:这两个算式有什么相同的地方?有什么不同的地方? 小结:这两个算式中三个加数分别相同,加数的'位置也相同。但两个算式加的顺序不同:左边的算式是先把前两个数相加;右边的算式是先把后两个加数相加。不管是哪两个数先加,最后的结果都一样。 4、算一算,下面的○里能填上等号吗? 其他的式子是不是也有这样的规律呢?我们来验证一下。 (45+25)+13○45+(25+13) (36+18)+22○36+(18+22) 5、归纳加法结合律: (1)观察这三个等式, 最后你能发现什么规律?向你的同桌说一说? (2)如果用a、b、c分别表示这三个加数,这个规律可以怎么样表示呢? (独立写一写)板书:(a+b)+c=a+(b+c) a、b、c代表什么?(a+b)+c表示什么?a+(b+c)表示什么? 小结:这就是加法结合律。板书:加法结合律。 全课总结:这节课我们一起探索了加法的哪两个运算律?有哪些发现? 指出:交换律和结合律都是在加法运算中存在的,涉及到的数都是加数。加法交换律只是交换加数的位置,和不变;加法结合律是改变运算顺序,和不变。 四、巩固练习1、“想想做做”1 同学们能不能分清什么是交换律什么是结合律呢? 下面的等式各运用了加法的什么运算律? 82+0=0+82 47+(30+8)=(47+30)+8 (84+68)+32=84+(68+32) 75+(48+25)=(75+25)+48 最后一题让学生体会在一个式子里既应用了加法的交换律又应用了加法的结合律。 插入“朝三暮四”的故事(机动) 下面我们来轻松一下,听个小故事。 (1)、美猴王孙悟空从天宫带了许多跆业交ü山,他把这些多鲜美的桃子分给山上猴子。他对身边一只小猴说:“从明天起,我每天早上给你3只桃子,晚上给你4只桃子”。贪心的小猴一听不满意地说:“早上才3只桃子,大王太少了。请你多给点。”悟空灵机一动说:“那这样吧,早上4只,晚上3只吧!”小猴连忙高兴地说:“多谢大王。” (2)、其实同学们一定很明白这两种分法,桃的总和是……(生:一样多或不变的。) (3)、孙悟空在这则朝三暮四的故事中运用了我们数学中的运算律是(生:加法交换律),满足贪心小猴的要求。 我们同学今天学会了加法交换律,一定不会像故事里的小猴那么愚蠢了。   2、想想做做2。 说说其中的第二题和第四题是根据什么填的。 3、想想做做4。   把学生分成两小组完成下面两组题目。   38+76+24 (88+45)+12   38+(76+24) 45+(88+12) 每组中哪题更简便,为什么?使用了什么规律? 小结:看样子在加的过程中使用加法交换律和加法结合律把能得整十整百的数先算,可以达到简便的效果。   五、全课总结,评价反思。

加法交换律教案 篇5

教学内容:

苏教版小学数学四年级上册P56-57例题及想想做做1~5题。

教学目标:

1、经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,感知加法运算律的价值,发展应用意识。

2、在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

3、在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。

教学准备:多媒体课件。

教学过程:

一、探索加法交换律

1、大家请看大屏幕,这些同学在进行体育锻炼,现在老师有个问题:跳绳的有多少人?应该怎么列式呢?指名回答,教师板书:28+17=45(人),追问:还可以怎么列?在学生回答后,教师完成板书:17+28=45(人)

2、问:观察这两个算式,你有什么发现?这两道算式的得数怎么样?可以用什么符号连接?板书:28+17=17+28

仔细地观察一下这个等式,在等号的两边,有什么相同?有什么不同?

3、你们能够象这样再说出几个类似的等式吗?根据学生回答,教师相机板书算式,并追问:说的对吗?我们来验证一下。(学生算等号左右两边的得数分别是多少)

问:这样的算式能写几个?(板书:省略号)

4、我们再仔细的观察这几个等式,你能不能用一句话说一说从中有什么发现?(小组交流)

同桌之间互相说一说,再指名汇报,学生发现规律:两个数相加,交换加数的位置,它们的和不变。

大家能不能用自己喜欢的符号、图形、字母等把发现的规律表示出来呢?在本子上试着写一写。指名回答。

5、大家都用自己的喜欢的方式表示了你们的发现,我们一般都用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这个规律该怎样表示呢?板书:a+b=b+a。(学生读一遍)

6、教师指着板书指出:这个规律就是加法交换律(板书:加法交换律),也就是说:两个数相加,交换加数的位置,和不变,

7、其实加法交换律我们早就会用了,想想看,什么时候我们用过?

指出:在验算加法时用的就是加法交换律。

8、练习:想想做做第3题。

二、探索加法结合律

1、解答例题,观察比较

(1)你会解决这个问题吗?(多媒体出示问题:参加活动的一共有多少人?)

你打算先求什么?再求什么?指名回答。

①先算出跳绳的有多少人。

问:谁会列出综合算式?指名回答并板书:(28+17)+23

②先算出女生有多少人。板书:28+(17+23)

请大家把这两题的答案算出来。

这两道算式结果相同,我们可把它写成怎样的等式?

指名回答并板书:(28+17)+23=28+(17+23)

(2)枚举归纳。

课件出示:算一算,下面的里能填上等号吗?

分4组每组计算一道。交流得数。

通过计算下面的里能填上等号吗?

板书:(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

问:象这样的等式还有很多很多。(板书:省略号)

2、探索规律

(1)观察比较这些等式,并在小组之间讨论一下这些问题:

媒体出示:①仔细观察这三组等式的左边和右边,你能找到哪些什么相同点?有什么不同点?③从中你发现三个数相加,有什么规律呢?

(2)问:如果用a、b、c表示三个加数,你能把上面的规律表示出来吗?

板书:(a+b)+c=a+(b+c)读一遍。

这个规律就是加法结合律。(板书:加法结合律)

师指着板书小结:三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,它们的和不变。

刚才我们学习的加法交换律和加法结合律都是加法的运算律。加法的这些运算律在学习中经常能运用到。

三、巩固内化,拓展应用。

1、完成P58页想想做做第1题。

(1)出示题目。(课件)

(2)让学生说说每一个等式各应用了什么运算律。指名解答。

2、书本翻到58页,第二题,你能在里填上合适的数吗?直接在书上填一填。

3、多媒体出示4道题,男生做第一组,女生做第二组。

38+76+24(88+45)+12

38+(76+24)45+(88+12)

4、第5题:连一连,哪两片树叶上的和是100?(课件演示)

四、全课总结,拓展延伸。

今天这节课我们学习了什么知识?能说说它们的具体内容吗?

加法交换律教案 篇6

国标本苏教版四年级上册P56―57例题,完成P58的“想想做做”。

1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。

2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

(播放《朝三暮四》视频)师:同学们,听了这个故事你想说什么?猴子很笨,同学们很聪明,栗子的总颗数有没有变化呢?什么发生变化?

引入:这个故事的名字叫《朝三暮四》,在数学中也有类似《朝三暮四》故事里的规律,同学们想不想研究一下?

谈话:天气渐渐转凉,学校要组织大家参加冬季比赛了,看,四年级同学正在操场上开展体育活动。

学生提到的问题可能有:跳绳的有多少人?女生有多少人?参加活动的一共有多少人?

谈话:同学们提出的问题都非常好,下面我们先来解决第一个问题。

课件出示问题(1)要求参加跳绳的有多少人?

提问:这两道算式都是求什么的人数?(跳绳的人数)结果都是多少?

谈话:既然得数相同,我们就可以把这两个算式用“=”连接起来。改写成28+17=17+28

提问:比较这两个算式,你有什么发现?(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。

提问:你能照样子再写出几个像这样的等式吗?试试看。(学生动笔写,指名学生回答,教师把学生说的等式有序地板书在黑板上,板书三个)。

提问:请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?

提问:你能用自己喜欢的方法表示出像这样的等式吗?可以用符号、字母、文

字等等表示,试试看。

学生写在练习本上,教师巡视,并作相应辅导。教师实物投影出学生写得情况。

师:在数学上,我们通常是用字母a、b来表示两个加数,说来说说怎么表示?

小结:两个数相加,交换这两个加数的位置,和不变。这是加法运算律中的一条很重要的规律,我们这节课就是来研究加法运算中的规律。

指名回答,为什么?

(2)下面的等式符合加法交换律吗?为什么?

75+25=25+75 46+59=46+59 90+10=5+95

(3)同学们学的真不错,接下来我们来玩个游戏,看看同学们的反应快不快。

97+44=35+65=

88+75=300+600=

a+b=785+68=

(4)提问:同学们,想一想:过去我们学过的计算中,哪些地方应用过加法交换律?

下面一道题357+218,请同学们计算并用加法交换律进行验算。

谈话:同学们,刚才我们通过解决“跳绳的有多少人”这个问题,得到了加法交换律,现在我们再来研究其他同学提到的问题,看看有什么发现。

加法交换律教案 篇7

1、探索和理解加法交换律,并能灵活运用。

2、感受数学与现实生活的联系,并能用所学知识解决简单的实际问题。 教学重、难点

看完这个动画片,你想对同学们说些什么?(如果学生们笑了,就借机问问学生们笑什么?)引导说出:

问:这两个算式有什么联系?(得数都等于7,都表示猴子一天吃的桃子)。这两个算式之间可以用什么数学符号连接起来呢?(等号)

谈话:其实这样的数学问题就在我们身边,同学们会骑自行吗?(会),李叔叔也会骑车,他这里有一个问题需要我们帮忙解决一下。 课件出示骑车主题图。

问:从中你可以得到哪些信息?要求什么呢?(上午骑了40千米,下午骑了56千米,今天一共骑了多少千米?)

请在草稿本上做,老师下去找到需要的答案,板书黑板。

两个算式计算的结果都是一样的,我们可以用等号连接起来。

观察这两组算式,都是两边计算的结果相等,可以用等号连接,你能再举出几个这样的列子吗?同桌互相交流。

全班交流,把学生的汇报结果写在黑板上。

同学们真聪明,举了这么多的列子,你能发现什么规律吗?请用最简洁的话概括出来。 同桌交流。

我把加数换成其他任意的数,交换律还成立吗?老师这里有几组算式 课件出示讲解过程

③ 1000+200 四位数加上三位数,交换加数的位置,和还是不变

刚才经过同学们的努力,我们发现了不管这两个加数是什么,只要两个加数交换了位置,他们的和不变。我们把这个规律叫做加法交换律。(板书:加法交换律)课件出示加法交换律的内容。

怎样表示任意两数相加,交换加数位置和不变呢?你能用自己喜欢的方式表示吗?

师:同学们各抒己见,用了这么多的方式表示。同学们觉得哪一种最好呢?为什么?(简洁明了。)

谈话:咱们知道了加法交换律,并且会用自己喜欢的方式表示,请同学们想一想,以前学过的知识中,哪些地方用到过加法交换律(验算加法时)

下面这个等式应用了加法交换律吗?

355+423=423+

总结:这节课上,同学们个个表现都很棒,积极思考,踊跃回答问题,学习热情不断高涨,数学家们总结的规律,我们也能发现,同学们真棒,想一想我们探索加法交换律的过程,你有什么收获呢?

加法交换律教案 篇8

教学目标:

1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使学生经历探索加法结合律和交换律的过程,发现并概括出运算律。

教学准备:

挂图、小黑板

教学过程:

一、教学新课教学加法交换律。

1、一年一度的学校运动会又即将举行了,学校的同学们都在做充分的准备。从这张图片中,你获得了哪些数学信息?

你能根据这些信息,提出几个用加法计算的问题吗?请学生回答。

①参加跳绳的一共有多少人?

②参加活动的女生一共有多少人?

③跳绳的男生和踢毽子的女生一共有多少人?

④参加活动的一共有多少人?

2、今天这节课,我们就一起来研究其中的这两个问题:

在黑板上张贴:参加跳绳的有多少人?

参加活动的一共有多少人?

我们先来解决第一个问题:参加跳绳的一共有多少人?

3、你们能马上口头列式并口算出结果吗?

指名回答,教师板书:2817=45(人)追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:1728=45(人)

为什么这两个算式的结果一样?

4、你们能用一个符号把它们连接起来吗?教师继续板书:2817=1728

这是一个等式,仔细地观察一下这个等式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?(同桌交流并汇报)

5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?

6、我们再仔细的观察这几个算式,从中你们发现什么规律?(用自己的话来说一说)你能用自己喜欢的方法、符号或文字来表示你们的发现吗?

教师巡视,并作相应的辅导,板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?

7、同学们都自己用自己喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:ab=ba。

8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书加法交换律),学生齐读一遍。

9、其实加法交换律我们早就会用了,想想看,什么时候我们用过?(在验算加法时用的就是加法交换律)

二、学习加法结合律。

1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究第二个问题“参加活动的一共有多少人?”看看我们有没有新的发现?

2、你们会自己列式解决这个问题吗?学生练习,教师巡视指导。

3、学生回答,教师有意识的板书:

(2817)23=68(人)

28(1723)

(2823)17

28(2317)

(2317)28

23(1728)

交流不同的算法。

下面,我们就来针对这两个算式开展研究:(2817)2328(1723)

(为了看得清楚,我们给2817添上括号)

4、观察或计算一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:

(2817)23=28(1723)

5、出示:下面的Ο里能填上等号吗?口算或计算一下。

(4525)13Ο45(2513)

(3618)22Ο36(1822)

学生回答,教师板书:(4525)13=45(2513)

(3618)22=36(1822)

6、看着黑板上的板书,你们从中有了什么新的发现?把你的发现在小组内先交流一下。学生小组交流后大堂再交流。

7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。

板书:(ab)c=a(bc)

a、b、c各代表什么?(ab)c表示什么?a(bc)表示什么?

教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。

四、巩固练习。

1、完成“想想做做”第1题。

以游戏的形式进行,女生代表交换律,男生代表结合律。

2、完成“想想做做”第2题(出示小黑板)说说是怎么想的。

3、完成“想想做做”第3题第1行。

4、插入“朝三暮四”的故事,来听个“朝三暮四”的成语故事。

战国时代,宋国有一个养猴子的老人,他在家中的院子里养了许多猴子。日子一久,这个老人和猴子竟然能沟通讲话了。这个老人每天早晚都分别给每只猴子四只桃子。几年后,老人的经济越来越不充裕了,而猴子的数目却越来越多,于是他就和猴子们商量说:“从今天开始,我每天早上给你们三只桃子,晚上还是照常给你们四只桃子,不知道你们同意不同意?”猴子们听了,都认为早上怎么少了一个?于是一个个就开始吱吱大叫,而且还到处跳来跳去,好象非常不愿意似的。

老人一看到这情形,连忙改口说:“那么我早上给你们四只,晚上再给你们三只,这样该可以了吧?”猴子们听了,以为早上桃子已经由三个变成四个,跟以前一样,就高兴的在地上翻滚起来。听了这个故事,你们有哪些想法?

让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老人采用了加法交换律。

5、完成“想想做做”第4题。

男生做第一行,女生做第二行。表扬女生快,知道为什么吗?

使学生初步感受应用加法运算律可以使计算简便。

6、完成“想想做做”第5题。

师:你能很快地找出哪两片树叶上的数的和是100吗?

学生在书上连线,同桌相互校对。

师:看来,在计算过程中,要有一双敏锐的眼睛,看到数字就能很快地判断出能不能凑成整百数。

五、课堂总结。

通过本节课的学习,你有什么新的收获?

教学反思:这节课主要教学加法的交换律和结合律,从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生

的发散性思维,并培养学生

的问题意思。同时也符合新课程“创造性使用教材”理念。在教学中主要通过让学生观察几组算式,从中总结出加法的交换律和结合律。学生能较快的体会出这两种加法的运算律,但在总结、交流加法的结合律时,学生的语言表达能力较差,教师应适当的进行指导和帮助。同时要鼓励学生用自己最喜欢的方法记忆加法的运算律,提高学生掌握能力。学生的记忆方法过于单调,教师应在开发学生思维上多下功夫。几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。在练习“想想做做”第1题第4小题时,注意让学生说清应用的运算律,这样才能为以后教学应用运算律进行简便计算作好铺垫。很可惜,我引导得不是最合适,学生自己发现的不多。整节课,由于新授部分花时较多,显得稍有拖沓,导致了有些练习来不及处理。

加法交换律教案热门


资料通常是指书籍、报刊、图表、图片等。在平日里的学习中,我们时常会使用到某些资料。有了资料才能更好地安排接下来的学习工作!那么,想必你在找可以用得到的资料吧?你不妨看看加法交换律教案热门,供有需要的朋友参考借鉴,希望可以帮助到你。

加法交换律教案 篇1

教学目标:

1.引导学生探究和理解加法交换律、结合律。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

(1)李叔叔今天一共骑了多少千米?

(2)李叔叔三天一共骑了多少千米?

练习本上用自己的方法列出综合算式,解答黑板上问题。

教师巡视,找出课堂上需要的答案,找学生板演。

学生观察第一组算式,发现特点。

根据学生的举例,进行板书。

通过这几组算式,你们发现了什么?

学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。

教师根据学生的小结,板书。

你能用自己喜欢的方式表示出加法交换律吗?

学生用多种形式表示。

引导学生观察第二组算式,总结出:

(88+104+96)=88+(104+96)学生观察第二组算式,发现特点。

学生继续观察几组算式。

通过上面的几组算式,你们发现了什么?

学生总结观察到的规律。

教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。

学生用自己喜欢的方式表示加法结合律。

学生根据这两个运算定律,举一些生活中的例子。

学生小结本节课学习的加法的运算定律。

今天这节课你们都有什么收获?

你能把这些运用于以后的学习中吗?

(1)李叔叔今天一共骑了多少千米?(2)李叔叔三天一共骑了多少千米?

40+56=96(千米)56+40=96(千米)88+104+96104+96+88

40+56=56+40(88+104)+96=88+(104+96)

两个加数交换位置,和不变。155+(145+207)=(155+145)+207

这叫做加法交换律。先把前两个数相加,或者先把后两个数相加,

和不变。这叫做加法结合律。

加法交换律教案 篇2

教学设计

教学内容:苏教版国标本四年级(上)教材p56-58页内容

教学目标:

1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交     换律和结合律。

2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解 决进行比较和分析,发现并概括出运算律。

3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:

使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:

使学生经历探索加法交换律和结合律的过程,发现并概括出运算规律。

课程资源的开发与利用:多媒体课件

教学过程:

一、 创设情境,初步感知

1、课前谈话(讲“朝三暮四”的故事)

听了这个故事,你想说些什么呢?(交换、不变)

2、情境引入

(1)谈话:同学们喜欢体育活动吗?谁来说说你最喜欢哪些体育活动?(自由说)

(2)媒体出示情境图,从图中你知道了哪些数学信息?(生自由说)

(3)师:你能提出用加法计算的问题吗?

①参加跳绳的一共有多少人?

②参加活动的女生一共有多少人?

③跳绳的男生和踢毽子的女生一共有多少人

④参加活动的一共有多少人?

(2)我们先来解决第一个问题:参加跳绳的一共有多少人?

你们能马上口头列式并口算出结果吗?

指名回答,教师板书:28+17=45(人 ),追问:还有不同的算式吗?在学生回答后,教师完成板书:17+28=45(人)

观察比较这两个不同算式的计算结果。提问:你们发现了什么?

引导学生说出:28+17和17+28的结果都是45。

教师接着指出:这两道算式的得数相同,我们可以把这两道算式写成这样的等式。(板书:28+17=17+28)

(如果有学生说出这是加法交换律,就问你能说说什么是加法交换律吗?如果有学生说出:交换加数的位置和不变,就及时指出,我们不能根据一个例子就做出一般的结论,应该多举几个例子,多观察几组不同数目的算式,才能从中发现规律。)请学生根据这个等式完成第二个问题。下面请同学们汇报前置性作业第二题。

2、在列举中验证规律

象这样的等式你会写吗?试试看,越多越好。开始:汇报前置性作业第三题。

谁愿意来交流。

提问:你写了几个?说说看 。

根据学生回答,教师相机板书算式,

有没有比她多的 。

提问:指着板书,你们写的时候有没有什么规律?

学生能说到加数不变,交换位置,结果是一样的就行。

按照这样的规律,如果老师给你时间你还能写吗?

能写几个?无数个,写不完,用省略号表示(板书……)

3、在反思中概括规律

有这样规律的算式很多,写不完,谁能用一句话概括出这个规律。(四人一组讨论,然后交流。)用课件出示加法交换律的文字表术法。用语言表示加法交换律很长,又比较难记。你能用自己喜欢的方法把这个规律简明的表示出来吗?

需要合作的同学,可以四人小组合作。教师巡视搜集信息。

估计情况:  甲数+乙数=乙数+甲数,……

请同学起来交流:

如果没说到:假如我们用a来表示第一个加数,用b来表示第二个加数,那怎样表示这个规律呢?板书:a+b=b+a。

小结:用图形,用字母,用文字来表示这类等式都起着相同的作用,简单明了的表示出这类等式的规律:(用手势比划)“交换两个加数的位置,和不变”。这一运算规律,我们称为“加法交换律”。习惯上,我们用小写字母表示加法交换律a+b=b+a。

指出:我们过去学过用交换加数的位置再加一遍的方法来验算加法,就是用了加法交换律。

5.看第二个问题,谁能马上列出算式,17+23,马上说出不同的算式?应用了?(加法交换律)

三、学习加法结合律。

1.在情境中感受规律

刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究“参加活动的一共有多少人?”看看我们有没有新的发现?

你们会列综合算式解决这个问题吗?再自备本上做,计算出结果。

交流:估计又学生列式28+17+23=68(人),你先算的是什么?(跳绳的人数)添上小括号表示强调先算,板书:(28+17)+23(人)

有没有不同的解法?估计有学生有列式28+(17+23)追问:这样列式先算的是什么?(女生人数)

如果还出现其他算式基本上都归为两种思路,先算跳绳的人数或先算女生的人数。

观察比较这两个不同算式的计算结果,引导学生说出计算结果是一样的,这两个算式也可以写成等式。生一起说,师板书:(28+17)+23=28+(17+23)

提问:它符合加法交换律吗?(不符合,加数的位置没变)

提问:加数的位置没变,那究竟加数的什么发生了变化呢?(相加的顺序不同)

引导学生一起说出:左边的算式是先把前两个加数相加,再加第三个数,右边的算式是先把后两个加数相加,再同第一个数相加。但他们的结果是一样的。

2、在计算中验证规律。

再来看这样两组算式:算一算,下面的ο 里能填上等号吗?汇报前置性作业第四题。

(45+25)+13ο45+(25+13)

(36+18)+22ο36+(18+22)

如果有学生直接回答结果是一样的,教师添上= 请学生分组验算。

学生回答,教师板书:(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

那现在老师来写个算式(28+46)+27=你能按照上面三个等式的规律写出等号后面的吗?

你还能写出类似的等式吗?汇报前置性作业第五题。

指名几个学生回答,追问:你是怎么想的?

回答要点:先算前两个加数的和和先算后两个加数的和的结果是一样的 。

有这样规律的算式多吗?板书……

3、揭示加法结合律

观察黑板上的几个等式,你能发现等号两边的算式什么没变?什么变了吗?

小组讨论:(要点:三个加数没变,加数的位置没变,运算顺序变了,结果没变)

提问:你们组发现了什么规律?谁来总结一下这个规律。这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。你能用a,b,c,表示加法结合律吗?这里的a,表示?b表示?c表示?

板书:(a+b)+c=a+(b+c)

跟老师一起读一遍。

指出:我们过去学过的加法的某些口算方法就是应用了加法结合律。例如:

9+7想:

=9+(1+6)

=(9+1)+6

=10+6

=16

三:巩固内化,拓展应用。

1、课件出示想想做做第1题。

师:下面的加法等式各应用了什么运算律?先说给同桌听听。

师:第一题运用了加法的交换律,第二、三题应用了加法的结合律,我们再来看最后一道等式,先运用了加法的交换律,交换加数48和25的位置,再应用了加法的结合律。所以在一道加法算式中,有时我们也可以同时应用两种运算律。

2、课件出示想想做做第2题:

师:请同学们在课本上独立完成以上填空题。再说说你是怎样想的,为什么能这么填写。

师:第三、四两道算式 ,我们都可以有两种填法,一种是只用加法的结合律,一种是同时使用加法的交换律和结合律。

3、课件出示想想做做第4题。

师:下面我们进行一场比赛,老师这有4道题,每组做一道,比一比,哪一组做得最快。

(1)38+76+24                    (3)(88+45)+12

(2)38+(76+24)                  (4)45+(88+12)

师:对于这样的比赛结果,你有什么话想说?

比较每组中的两道题有什么联系?哪道题计算更简便些?

师:通过计算,我们发现,每组两道算式中的第二道算式相对来说比较快,因为我们在计算时第一步都可以凑整,计算的结果是100。从中我们可以发现应用了加法的运算律可以使计算简便。

4、完成想想做做第5题

师:哪两片树叶上的和是100?连一连。想一想,怎样的两个数相加和是100。

师:我们在找的时候,是先看个位上的数是几,然后再看哪一个数的个位上的数和它可以凑十,因为凑十是凑整的基础。例如75的个位上是5和25的个位上5可以凑十,然后再看两个数的十位上的数相加是否得九。7+2得9,再加上个位进上来的1,两个数相加的和就是100。在今后的计算中,同学们要做个有心人,在计算之前先观察一下,看看能否运用我们所学过的运算律,把能凑成整十、整百或整千的数先计算,这样可以使计算变得简便,有助于提高计算的速度和正确率。)

5、游戏:谈话:我们班有60位学生,那么老师就是班级中61号,老师想和班级中的9、19、29、39、49、59号交朋友。猜一猜老师为什么要和他们交朋友?(凑整,简便)

6、你想和班级中哪几号同学交朋友?

四、课堂总结

师:今天这节课,通过同学们的共同努力,我们一起认识了加法交换律和结合律,那么减法、乘法、除法有没有运算定律呢?今后我们再研究。不管学习什么内容,只要我们每一位同学都要相信自己能行,只要自己努力去学,就一定会学有所成。

板书设计:

加法的运算定律

加法交换律                                 加法结合律

28+17=45(人) 17+28=45(人)   (28+17)+23  28+(17+23)

28+17=17+28                 =45+23       =28+40

17+23=23+17                 =68(人)    =68(人)

学生汇报的算式                  (28+17)+23=28+(17+23

(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

a+b=b+a                                (a+b)+c=a+(b+c)

加法交换律教案 篇3

加法交换律和加法结合律教学反思

1、提供自主探索的机会

本节课以学生喜欢的故事为教学的切入点,激发学生主动学习数学的需要,为教师进行教学活动创设了良好的氛围。通过解决生活中的问题,让学生对两个算式进行观察比较,唤醒了学生已有的知识经验,使学生初步感知加法运算律。在探索加法运算律的过程中,为学生提供自主探索的时间和空间,让学生经历探索的过程,获得成功的体验,增强学生学习数学的信心。

2、关注学生已有的知识经验。

在学习加法运算律之前,学生对四则运算已有了较多的感性认识,为新知的学习奠定了良好的基础。教学中注意激活学生原有的知识经验,让学生始终处于主动探索知识的状态,促使学生对原有知识进行更新、深化、超越。

3、引导学生在体验中感悟数学

教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化,同时也体验到学习数学的乐趣。

本课围绕“观察猜想——举例验证——得出结论”这一数学方法展开,从学生的学习情况来看,通过本课的学习不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法。

不足之处:

1.创设生动活泼的数学情景,能有效吸引学生的注意力,提高学生的学习兴趣,增强学生投入学生学习的积极性,2、在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算律。

3、安排这两个运算律教学时采用的都是不完全归纳推理,因此在教学加法结合律时也应该让学生多举些列子,让学生去评价举的例子好不好,让学生自己去发现结合是把可以得出整百整十的数放在一起,而不是随意的乱编。然后进一步分析、比较,发现规律,并先后用符号字母表示出发现的规律。

加法交换律和加法结合律教学反思

金州新区五一路小学

谷 云 2011年11月

加法交换律教案 篇4

1、教学内容。

“加法交换律和乘法交换律”是北师大版《义务教育课程标准实验教课书》四年级上册第四单元的内容。书中把两部分内容编排在一起。在备课过程中,根据教学内容和学情我先引导学生观察发现加法交换律,然后在学生掌握加法交换律的基础上迁移过来。让孩子们大胆猜想,进而验证,得出乘法交换律。

2、加法、乘法交换律在数学学习中的作用。

本单元所学习的几条运算定律,不仅适用于整数的加法和乘法,也适用于有理数的加法和乘法。随着数的范围的进一步扩展,在实数甚至复数的加法和乘法中,它们仍然成立。因此,这些运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。而加法、乘法交换律又是这数学大厦基石中的基石。

加法、乘法交换律的内容比较简单,学生在以前的学习过程中都有过浅显的认知基础,只是没有明确的概括,本节课的教学很大程度上是要将学生以前比较零散的感性认识经过整理、明晰后上升为理性认识,因此,学生学起来比较容易。但是用符号或字母表示加法交换律,则是学生认识上的一个难点,因为这是学生第一次接触从研究确定的数到用字母表示一般的数,比较抽象,理解起来也比较困难。再有,学习方法比学习知识更为重要。不要简单地让孩子们学习运算定律,而是重在渗透给他们去猜想、验证并得出结论的'数学研究的方法。

所以在设计本节课时我更多的想的是,如何让学生主动地去思考,去验证,经历得出结论的过程。自然地经历由用数到用字母表示的知识形成的过程,让学生在理解、感悟、体验中感受字母表示的优越性,从而为后面的其他运算定律的教学,以及正式教学“用字母表示数”打下基础。

3、教学目标。

有了上面的思考,我把本课的教学目标定为:

(1)使学生经历探索加法、乘法交换律的过程,理解并掌握加法交换律。

(2)使学生感受数学与现实生活的联系,培养学生根据具体情况,选择算法的意识与能力。

(3)经历加法交换律逐步符号化,形式化的过程,使学生初步感受用字母表示运算定律的优越性,培养学生的符号感。

(4)渗透给学生用“举例验证法”来验证规律存在的真实性数学学习方法。

5、教学难点:会用个性化的符号或字母表示加法、乘法交换律。能根据加法运算定律展开猜想,并能进行举例验证。

交换两个加数的位置,和不变,学生在一年级的时候就会,只是比较零散,没有系统的表达。知识点本身的学习并不应“浓墨重彩”去渲染,我们的小学数学教学不仅应该关注“是什么”和“怎样做”,还应该引导学生去猜想、去探究“为什么”和“为什么这样做”,这样才能够凸显出“数学是思维的体操”这一学科特色。教师应该带领学生经历从现象到本质的探究过程,给学生一个问题模式,让学生“知道怎样思维”,让学生感悟一些数学研究的一般方法。

因此我在设计本课教学的基本思想是:

一是紧密联系学生的生活实际,引导学生在已有经验的基础上发现和归纳出运算定律。

二是重视让学生在探索中经历运算定律的发现过程,大致应该经过以下几步:观察、猜测、举例、验证,得到规律。

三是给学生提供机会经历“具体事物——学生个性化的符号表示——学会数学地表示”这一逐步符号化、形式化的过程。

本节课分三部分教学。

(一) 复习引入,得出加法交换律。

(二) 知识迁移,得出乘法交换律。

我以为,教学运算律主要让学生经历不完全归纳的过程,只注意让学生举出实例进行验证,而忽视了能否找到反例的问题。对于不完全归纳法来说,举出的正例越多,则意味着结论的可靠性越大;但若发现了一个反例,则可推翻结论。因此,我预设了“刚才老师和同学们举了这么多例子,有没有不符合这个规律的例子?”这个问题,学生通过无法找到反例,加深了对结论可靠性的认识。在这个过程中,学生不仅获得了数学结论,更重要的是学到了获得数学结论的思想方法和体悟到科学研究方法的严谨性。

从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论。

选择一个你感兴趣的,用合适的方法试着验证。使学生经历“形成猜想、举例验证”的完整、真实的过程,感悟数学研究的一般方法。

加法交换律教案 篇5

加法的交换律和结合律一课在人教版和苏教版中都是安排在四下上这个内容,在现在的苏教国标版教材也是安排在四年级。加法的交换律和结合律一课是属于第二学段中的数的运算中的一个重要内容。是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律结合律的基础。

新教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。新教材教学目标:

1、知识技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使学生经历探索加法结合律和交换律的过程,发现并概括出运算律。

旧教材教学目标:

1、使学生理解并掌握加法交换律和结合律。

2、使学生理解和掌握加法交换律与加法结合律的异、同点,及其特点。

3、能利用加法的交换律进行加法的验算。

4、培养学生观察、概括、分析推理的能力。

教学重点:引导学生概括、总结加法的加法交换律和结合律,会用字母表示。

教学难点:在理解的基础上概括加法交换律和结合律,并能用文字和字母表示。

从新旧教材的目标比较以及例题设计中可以看出两者的目标定位是不一样的。

1.旧教材的目标比较单一,主要的目标是知识技能方面的目标,如能口头表达加法交换律和结合律的意义,能用字母去表示,并会运用于验算。新教材的目标设定不仅仅体现了知识技能方面的目标,更多的体现了过程和方法,情感态度方面的目标以及对于数学思想方法(不完全归纳法,符号感)的渗透。目标的设定是使各项目标与具体的学习相结合起来,成为一个有机的整体。

2.旧教材的目标体现不出教学的方法及学生的学法,而新教材的教学目标中能体现出一些具体的做法,如通过对熟悉的实际问的解决,经历探索加法交换律和结合律的过程,数学活动过程始终作为重点贯穿与教学中。

韩玲老师在上加法的交换律和结合律这课时,也充分考虑到了新旧教材目标定位的不同。从课堂的引入韩老师就以最贴近生活的实际体育要闻十运会金牌数为题,一下子激起了学生学习的“兴奋点”,很自然的进入了后面的学习。在学生提出一些列的数学问题并列出算式之后,教师开始引导学生比较和分析这两道算式之间有什么相同的地方?有什么不同的地方?可以用等号连接吗?问:观察黑板上的这三道等式,你发现了什么规律?问:是不是其他的数之间也存在这种规律呢?请你再举一个这样的例子验证验证。举了这么多的例子,你找到规律了吗?这个规律用语言叙述比较长,你能够用自己喜欢的方式把这个规律简单明了地表达出来吗?(生口述,教师板书)在这样一个教师引导,学生进行比较、分析、举例、验证,表达的过程中,充分发挥了学生主体的作用,也让学生感受到了发现规律的一般过程,从而达到经历过程,讨论提升,归纳概括的目的。结合律的教学过程则更多的体现了学生自主探索,推导,验证的一个完整过程。

新教材的目标设定及教学过程,更多的体现了动态生成,寓数学思考,探究,发现于一体的数学活动过程,教师只有把握住了这个精髓才能去上好课,发展学生的综合能力。

加法交换律教案 篇6

小学数学人教版加法的意义和加法交换律教案

课题:加法的意义和加法交换律(小学数学人教版第八册)

授课教师:王晓华(六里坪镇财神庙小学)

教学内容:教材第2题。

教学要求:

1、使学生在已有加法知识的基础上,理解并概括加法的意义和加法交换律,能从感性认识上升到理性认识。

2、培养学生初步的归纳推理能力。

教学重点:加法交换律

教学难点:使学生在理解的基础上自己概括出加法的意义和归纳出加法交换律。

教学准备:小黑板

教学方法:启发式

教学过程

一、课题提示

我们学了几年数学,几乎每天都与加法打交道,谁能说说什么是加法吗?今天我们学习加法的意义。(板书课题:加法的意义)

二、教学新课

(一)、教学加法的意义。

1、出示例1。学生读题,指名说已知条件和问题,老师画线段图。

然后问:为什么要用加法算?

3、引导看线段图,老师辅以手势说明,我们用加法把137和357合并成了494这一个数,可见加法是一种运算。加法是一种怎样的运算呢?

4、说出式中的各部分的名称。什么是加数?什么是和?

5、刚才的加法中,加数中不含0;如果含有0,得多少呢?举例:7+0=7,0+7=7,0+0=0。…,得出结论,一个数加上0,还得原数。

(二)教学加法交换律。

1、看例1线段图,刚才我们求北京到济南的铁路长。如果要求济南到北京的铁路长还可以怎样列式?

2、为什么用加法算?

有什么相同点和不同点?

4、如果其他任意两个数相加时,交换一下两个加数的位置,相加的和是不是也不变呢?

5、出示例2两组式子,引导学生比较。讨论:两组算式有什么共同点?归纳并板书加法交换律。

6、加法交换律除了用文字语言进行叙述外,还可以用字母写成的式子来表示。如果用字母a和b分别表示两个加数,怎样表示加法交换律?

说一说a和b分别表示什么?比较一下文字叙述和字母表示的式子,哪一种简明好记。

(1)填空。

①把两个数合并成( )个数的'( ),叫着加法;相加的两个数叫做( ),加得的数叫做( )。

②++25=25+a

③两个数相加,交换它们的位置,它们的( )不变。

④律。

⑤一个数加上( ),是原数。

①任意两个数的和,一定比这两个数大。( )

②下面哪些算式符合加法交换律?

28+a=a+28

③用字母a和b分别表示两个加数,加法交换律写成:a+b=a+c。( )

三、课堂小结

说一说加法的意义和加法交换律的含义。

四、作业布置

练习十一的第1、2题。

附板书:

加法的意义和加法交换律

例 7+0=7 0+7=7 0+0=0

(画示意图) 一个数加上0,还得原数

137+357=357+137

加数 加数 和 18+17㈡17+18

答:(略) 两个数相加,交换加数的位置,它们的和不变,这就是加法交换律。

加法交换律教案 篇7

师:咱们来做个游戏,我说3+2,你们就说2+3,看谁反应快。明白吗?现在开始。

师:为了让大家看得清楚,现在请一个同学上台,把我们游戏的算式用等式逐一写在黑板上。

师:从刚才这位同学写的等式中,你们发现了什么?有什么规律吗?

生(乙):我发现,两个加数不但交换了位置,而且左右的结果是一样的。

师:你们的想法很有道理,也就是说在加法中,交换两个加数的位置,结果不变。你能用比较简单的方法表示刚才发现的运算规律吗?

生(甲):我认为用符号可以表示,两个数就用不同符号表示,比如用○和□,这个规律就可以这样表示:○+□=□+○

师:这道等式表示了加法中的一个重要的运算规律,这个规律就是加法交换律。

反思:

1、通过创设游戏情境,让学生在游戏中体会加法交换律,学生在愉悦的氛围中认识规律。

2、让学生用不同的方法表示规律,一方面可以培养学生的创新意识,另一方面让学生经历由数到符号的演变过程。最终通过交流互动生成由字母表示的加法交换律。

3、整个过程以学生为主体,把学习主动权交给学生,使探究成为课堂的主旋律,这样富有生气的课堂教学,必定有利于学生的发展。