高中数学必修5知识点总结归纳

高中数学必修5知识点总结归纳。

时间匆匆流逝了,走得那么无影无踪,在某一段时间之中,我们经历了很多的事,在事情过后,我们或主动或被动的写一篇总结,总结的精髓在于客观的查错改错。我们该如何去写一份优秀的总结范文呢?以下是小编收集整理的“高中数学必修5知识点总结归纳”,供你参考,希望能够帮助到大家。

篇一:高中数学必修5等比数列知识点总结及题型归纳

等比数列知识点总结及题型归纳

1、等比数列的定义:2、通项公式:

an?a1qn?1?

a1n

q?A?Bn?a1?q?0,A?B?0?,首项:a1;公比:q

q

an?q?naman

?q?q?0??n?2,且n?N*?,q称为公比 an?1

推广:an?amqn?m?qn?m?3、等比中项:

(1)如果a,A,b成等比数列,那么A叫做a与b的等差中项,即:A2?

ab或A?注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列?an?是等比数列?an2?an?1?an?1 4、等比数列的前n项和Sn公式:

(1)当q?1时,Sn?na1 (2)当q?1时,Sn?

?

a1?1?qn?1?q

?

a1?anq

1?q

a1a

?1qn?A?A?Bn?ABn?A(A,B,A,B为常数) 1?q1?q

5、等比数列的判定方法:

(1)用定义:对任意的n,都有an?1?qan或

an?1

?q(q为常数,an?0)?{an}为等比数列 an

(2)等比中项:an2?an?1an?1(an?1an?1?0)?{an}为等比数列 (3)通项公式:an?A?Bn?A?B?0??{an}为等比数列

6、等比数列的证明方法:

a

依据定义:若n?q?q?0??n?2,且n?N*?或an?1?qan?{an}为等比数列

an?17、等比数列的性质:

(2)对任何m,n?N*,在等比数列{an}中,有an?amqn?m。

(3)若m?n?s?t(m,n,s,t?N*),则an?am?as?at。特别的,当m?n?2k时,得an?am?ak2注:a1?an?a2?an?1?a3an?2???

ak

(4)数列{an},{bn}为等比数列,则数列{,{k?an},{ank},{k?an?bn},n(k为非零

bnan

常数)均为等比数列。

(5)数列{an}为等比数列,每隔k(k?N*)项取出一项(am,am?k,am?2k,am?3k,???)仍为等比数列 (6)如果{an}是各项均为正数的等比数列,则数列{logaan}是等差数列 (7)若{an}为等比数列,则数列Sn,S2n?Sn,S3n?S2n,???,成等比数列

(8)若{an}为等比数列,则数列a1?a2?????an,an?1?an?2?????a2n,a2n?1?a2n?2??????a3n成等比数列

1

a1?0,则{an}为递增数列{(9)①当q?1时,a1?0,则{an}为递减数列

a1?0,则{an}为递减数列{②当0q?1时,a1?0,则{an}为递增数列

③当q?1时,该数列为常数列(此时数列也为等差数列); ④当q?0时,该数列为摆动数列.

(10)在等比数列{an}中,当项数为2n(n?N*)时,

S奇1

? S偶q

二、 考点分析

考点一:等比数列定义的应用

14

1、数列?an?满足an??an?1?n?2?,a1?,则a4?_________.

33

2、在数列?an?中,若a1?1,an?1?2an?1?n?1?,则该数列的通项an?______________. 考点二:等比中项的应用

1、已知等差数列?an?的公差为2,若a1,a3,a4成等比数列,则a2?( ) A.?4 B.?6C.?8 D.?10 2、若a、b、c成等比数列,则函数y?ax2?bx?c的图象与x轴交点的个数为( ) A.0

B.1 C.2 D.不确定

20

3、已知数列?an?为等比数列,a3?2,a2?a4?,求?an?的通项公式.

3

考点三:等比数列及其前n项和的基本运算

291

1、若公比为的等比数列的首项为,末项为,则这个数列的项数是( )

383

A.3 B.4C.5 D.6

2、已知等比数列?an?中,a3?3,a10?384,则该数列的通项an?_________________. 3、若?an?为等比数列,且2a4?a6?a5,则公比q?________. 4、设a1,a2,a3,a4成等比数列,其公比为2,则 A.

2a1?a2

的值为( )

2a3?a4

111 B. C. D.1 428考点四:等比数列及其前n项和性质的应用

1、在等比数列?an?中,如果a6?6,a9?9,那么a3为( )

316

C. D.2 29

2、如果?1,a,b,c,?9成等比数列,那么( ) A.b?3,ac?9 B.b??3,ac?9 C.b?3,ac??9 D.b??3,ac??9

A.4 B.

3、在等比数列?an?中,a1?1,a10?3,则a2a3a4a5a6a7a8a9等于( ) A.81

B

.C

2

D.243

4、在等比数列?an?中,a9?a10?a?a?0?,a19?a20?b,则a99?a100等于( )

b9b10?b??b?A.8B.??C.9D.??

aa?a??a?

9

10

5、在等比数列?an?中,a3和a5是二次方程x2?kx?5?0的两个根,则a2a4a6的值为() A.25

B

C

.?

D

.?

6、若?an?是等比数列,且an?0,若a2a4?2a3a5?a4a6?25,那么a3?a5的值等于?S,(n?1)

考点五:公式an??1的应用

?Sn?Sn?1,(n?2)

1.等比数列前n项和Sn=2n-1,则前n项的平方和为( )

11

A.(2n-1)2 B.(2n-1)2 C.4n-1 D.(4n-1)

33

2. 设等比数列{an}的前n项和为Sn=3n+r,那么r的值为______________.

3.设数列{an}的前n项和为Sn且S1=3,若对任意的n∈N*都有Sn=2an-3n. (1)求数列{an}的首项及递推关系式an+1=f(an); (2)求{an}的通项公式;

(3)求数列{an}的前n项和Sn.

3

篇二:高中数学必修一至必修五知识点总结完整版

高中数学必修1知识点总结

第一章 集合与函数概念

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1.元素的确定性; 2.元素的互异性; 3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ ? } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2.集合的表示方法:列举法与描述法。

非负整数集(即自然数集)记作:N

正整数集 N*或 N+整数集Z 有理数集Q 实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

4、集合的分类:

(1).有限集含有有限个元素的集合

(2).无限集含有无限个元素的集合

(3).空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1}“元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且B? A那就说集合A是集合B的真子集,记作A? B(或B? A)

③如果 A?B, B?C ,那么 A?C

④如果A?B 同时 B?A 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

四、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.

(又注意:求出不等式组的解集即为函数的定义域。)

构成函数的三要素:定义域、对应关系和值域

注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (见课本21页相关例2)

值域补充

(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点p(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象. 集合C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ p(x,y) | y= f(x) , x∈A },图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

(2) 画法

A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点p(x, y),最后用平滑的曲线将这些点连接起来.

B、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3)作用:

1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。发现解题中的错误。

4.了解区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应, 那么就称对应f:A→ B为从集合A到集合B的一个映射。记作“f:A→ B” 给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应

法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

常用的函数表示法及各自的优点:

1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值.

补充一:分段函数(参见课本p24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

补充二:复合函数

如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g 的复合函数。

例如:y=2sinxy=2cos(2x+1)

7.函数单调性

(1).增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量a,b,当ab时,都有f(a)f(b),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)

如果对于区间D上的任意两个自变量的值a,b,当ab 时,都有f(a)>f(b),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2 必须是对于区间D内的任意两个自变量a,b;当ab时,总有f(a)f(b) 。

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减 函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A) 定义法:任取a,b∈D,且ab;2 作差f(a)-f(b);3 变形(通常是因式分解和配方);4 定号(即判断差f(a)-f(b)的正负);5 下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)_

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关

注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?

8.函数的奇偶性

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

注意:1、 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

2、 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

3、具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)

10.函数最大(小)值(定义见课本p36页)

(1)、 利用二次函数的性质(配方法)求函数的最大(小)值.(2)、 利用图象求函数的最大(小)值(3)、 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

篇三:人教版数学必修五知识点总结

第一章 解三角形

1、内角和定理:(1)三角形三角和为?,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.(2)锐角三角形?三内角都是锐角?三内角的余弦值为正??

2、正弦定理:???2R(R为三角形外接圆的半径). (1)a:b:c?sinA:sinB:sinC;(2)a?2RsinA,b?2RsinB,c?2RsinC

(3)解三角形:已知三角形的几个元素求另外几个元素的过程。

可求其它边和角?已知两角和任意一边, ?,可求其它元素?已知两边和一边的对角

注意:已知两边一对角,求解三角形,若用正弦定理,则务必注意可能有两解.

?b2?c2?a2

?cosA?2bc?a2?b2?c2?2bccosA?222a?c?b??2223、余弦定理: (求边)?b?a?c?2accosB 或 (求角)?cosB?2ac??c2?a2?b2?2abcosC222??cosC?a?b?c

?2ab?

已知两边一角求第三边??. 已知三边求所有三个角(注:常用余弦定理鉴定三角形的类型)??已知两边和一边对角,求其它?

?1?2absinC

?1abc?14、三角形面积公式:S?aha??bcsinA?. 224R??1acsinB??2

5、解三角形应用

(1)在视线和水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角。

(2)从正北方向顺时针转到目标方向的水平角叫方位角。

(3)坡面与水平面所成的二面角度数的正切值叫做坡度。

(4)解斜三角形应用题的一般步骤:

分析→建模→求解→检验

第二章 数 列

1.数列的通项、数列的项数,递推公式与递推数列,数列的通项与数列的前n项和公式的关系:an?,(n?1)?SS?S,(n?2)1

nn?1(必要时请分类讨论).

注意:an?(an?an?1)?(an?1?an?2)???(a2?a1)?a1;an?

2.等差数列{an}中:

(1)等差数列公差的取值与等差数列的单调性. anan?1a ????2?a1.an?1an?2a1

?d?0?数列单调递增?,可知d的取值为d?R. ?d?0?数列为常数列

?d?0?数列单调递减?

(2)an?a1?(n?1)d?am?(n?m)d;p?q?m?n?ap?aq?am?an.

(3)??1an??2bn?、{kan}也成等差数列.

(4)在等差数列{an}中,若am?n,an?m(m?n),则am?n?0.

(5)a1?a2???am,ak?ak?1???ak?m?1,?仍成等差数列.

(6)Sn?n(a1?an)n(n?1)ddSd,Sn?n2?(a1?)n,an?2n?1,,Sn?na1?。 2n?12222

amS2m?1?. bmT2m?1?an??(7)若Sn,Tn分别为等差数列,bn?的前项和,则两数列第m项之比

(8)若?an?为等差数列,则其前m项和、中间m项和、后m项和Sm,S2m?Sm,S3m?S2m成等差数列。

(9)“首正”的递减等差数列中,前n项和的最大值是所有非负项之和;

“首负”的递增等差数列中,前n项和的最小值是所有非正项之和;

(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.

(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).

3.等比数列{an}中:

(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.

(2)an?a1qn?1?amqn?m; p?q?m?n?bp?bq?bm?bn.

(3){an}、{bn}成等比数列{|an|}、an,??a???

a1?、,??{ka}ab??b2

?n?nnn??成等比数列.

?n?n

(4)a1?a2???am,ak?ak?1???ak?m?1,?成等比数列.

?na1 (q?1)?na1 (q?1)????a1n(5)Sn??a1?anqa1(1?qn). a1?q? (q?1)? (q?1)?1?q?1?q1?q1?q??

特别:an?bn?(a?b)(an?1?an?2b?an?3b2???abn?2?bn?1).

(6)若?an?为等比数列,则其前m项和、中间m项和、后m项和Sm,S2m?Sm,S3m?S2m成等比数列。

(7)“首大于1”的正值递减等比数列中,前n项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前n项积的最小值是所有小于或等于1的项的积;

(8)有限等比数列中,若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.

(9)等比中项要么不存在,要么仅当实数a,b

同号时存在,且必有一对G?

(10)判定是否是等比数列的方法:定义法、中项法、通项法、和式法。

4.等差数列与等比数列的联系

(1)如果数列{an}成等差数列,那么数列{An}(An总有意义)必成等比数列.

(2)如果数列{an}成等比数列,那么数列{loga|an|}(a?0,a?1)必成等差数列.

(3)如果数列{an}既成等差又成等比,那么数列{an}是非零常数数列;但反之不成立。

(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,

5.数列求和的常用方法:

(1)公式法:①等差数列求和公式(三种形式),

②等比数列求和公式(三种形式), aa

2222③1?2?3???n?n(n?1),1?2?3???n?n(n?1)(2n?1),26

1?3?5???(2n?1)?n2,1?3?5???(2n?1)?(n?1)2.

(2)分组求和法:常将“和式”中“同类项”先合并在一起,再运用公式法求和.

(3)倒序相加法;(4)错位相减法;

(5)裂项相消法: ①??, ②?(?), 特别声明:?运用等比数列求和公式,务必检查公比与1的关系,必要时分类讨论.

三、不等式

1.(1)求不等式的解集,务必用集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.

(2)解分式不等式f?x??a?a?0?(移项通分,等价为分子分母相乘大于或小于0); gx(3;

(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.

2.利用重要不等式a?b?2ab 以及变式ab?()等求函数的最值时,务必注意a,2

b?R,且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三相等).

???3.

2??

a、b、c?R,a?b?c?ab?bc?ca(当且仅当a?b?c时,取等号)

4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

5.含绝对值不等式的性质: 222

a、b同号或有0?|a?b|?|a|?|b|?||a|?|b||?|a?b|;

a、b异号或有0?|a?b|?|a|?|b|?||a|?|b||?|a?b|.

6.不等式的恒成立问题

若不等式f?x??A在区间D上恒成立,则等价于在区间D上f?x?min?A

若不等式f?x??B在区间D上恒成立,则等价于在区间D上f?x?max?B


Gz85.Com更多总结小编推荐

高中化学必备知识点归纳与总结


一、俗名

无机部分:

纯碱、苏打、天然碱 、口碱:na2co3

小苏打:nahco3 大苏打:na2s2o3

石膏(生石膏):caso4.2h2o 熟石膏:2caso4?h2o

莹石:caf2 重晶石:baso4(无毒) 碳铵:nh4hco3

石灰石、大理石:caco3 生石灰:cao 食盐:nacl 熟石灰、消石灰:ca(oh)2 芒硝:na2so4?h2o (缓泻剂) 烧碱、火碱、苛性钠:naoh 绿矾:feso4?h2o 干冰:co2 明矾:kal (so4)2?2h2o 漂白粉:ca (clo)2 、cacl2(混和物) 泻盐:mgso4?h2o 胆矾、蓝矾:cuso4?h2o 双氧水:h2o2

皓矾:znso4?h2o 硅石、石英:sio2 刚玉:al2o3

水玻璃、泡花碱、矿物胶:na2sio3 铁红、铁矿:fe2o3 磁铁矿:fe3o4

黄铁矿、硫铁矿:fes2 铜绿、孔雀石:cu2 (oh)2co3

菱铁矿:feco3 赤铜矿:cu2o 波尔多液:ca (oh)2和cuso4

石硫合剂:ca (oh)2和s 玻璃的主要成分:na2sio3、casio3、sio2

过磷酸钙(主要成分):ca (h2po4)2和caso4

重过磷酸钙(主要成分):ca (h2po4)2

天然气、沼气、坑气(主要成分):ch4 水煤气:co和h2

硫酸亚铁铵(淡蓝绿色):fe (nh4)2 (so4)2 溶于水后呈淡绿色

光化学烟雾:no2在光照下产生的一种有毒气体 王水:浓hno3:浓hcl按体积比1:3混合而成。

铝热剂:al fe2o3或其它氧化物。 尿素:co(nh2) 2

有机部分:

氯仿:chcl3 电石:cac2 电石气:c2h2 (乙炔)

tnt:三硝基甲苯

氟氯烃:是良好的制冷剂,有毒,但破坏o3层。 酒精、乙醇:c2h5oh

裂解气成分(石油裂化):烯烃、烷烃、炔烃、h2s、co2、co等。

焦炉气成分(煤干馏):h2、ch4、乙烯、co等。 醋酸:冰醋酸、食醋 ch3cooh

甘油、丙三醇 :c3h8o3 石炭酸:苯酚 蚁醛:甲醛 hcho

福尔马林:35%—40%的甲醛水溶液 蚁酸:甲酸 hcooh

葡萄糖:c6h12o6 果糖:c6h12o6 蔗糖:c12h22o11 麦芽糖:c12h22o11 淀粉:(c6h10o5)n

硬脂酸:c17h35cooh 油酸:c17h33cooh 软脂酸:c15h31cooh

草酸:乙二酸 hooc—cooh (能使蓝墨水褪色,呈强酸性,受热分解成co2和水,使kmno4酸性溶液褪色)。

二、 颜色

铁:铁粉是黑色的;一整块的固体铁是银白色的。

fe2 ——浅绿色 fe3o4——黑色晶体 fe(oh)2——白色沉淀

fe3 ——黄色 fe (oh)3——红褐色沉淀 fe (scn)3——血红色溶液

feo——黑色的粉末 fe (nh4)2(so4)2——淡蓝绿色

fe2o3——红棕色粉末

铜:单质是紫红色

cu2 ——蓝色 cuo——黑色 cu2o——红色

cuso4(无水)—白色 cuso4?h2o——蓝色

cu2 (oh)2co3 —绿色

cu(oh)2——蓝色 [cu(nh3)4]so4——深蓝色溶液

fes——黑色固体

baso4 、baco3 、ag2co3 、caco3 、agcl 、 mg (oh)2 、三溴苯酚均是白色沉淀

al(oh)3 白色絮状沉淀 h4sio4(原硅酸)白色胶状沉淀

cl2、氯水——黄绿色 f2——淡黄绿色气体 br2——深红棕色液体

i2——紫黑色固体 hf、hcl、hbr、hi均为无色气体,在空气中均形成白雾

ccl4——无色的液体,密度大于水,与水不互溶

na2o2—淡黄色固体 ag3po4—黄色沉淀 s—黄色固体 agbr—浅黄色沉淀

agi—黄色沉淀 o3—淡蓝色气体 so2—无色,有剌激性气味、有毒的气体

so3—无色固体(沸点44.8度) 品红溶液——红色 氢氟酸:hf——腐蚀玻璃

n2o4、no——无色气体 no2——红棕色气体

nh3——无色、有剌激性气味气体 kmno4--——紫色 mno4-——紫色

三、 现象:

1、铝片与盐酸反应是放热的,ba(oh)2与nh4cl反应是吸热的;

2、na与h2o(放有酚酞)反应,熔化、浮于水面、转动、有气体放出;(熔、浮、游、嘶、红)

3、焰色反应:na 黄色、k紫色(透过蓝色的钴玻璃)、cu 绿色、ca砖红、na (黄色)、k (紫色)。

4、cu丝在cl2中燃烧产生棕色的烟; 5、h2在cl2中燃烧是苍白色的火焰;

6、na在cl2中燃烧产生大量的白烟; 7、p在cl2中燃烧产生大量的白色烟雾;

8、so2通入品红溶液先褪色,加热后恢复原色;

9、nh3与hcl相遇产生大量的白烟; 10、铝箔在氧气中激烈燃烧产生刺眼的白光;

11、镁条在空气中燃烧产生刺眼白光,在co2中燃烧生成白色粉末(mgo),产生黑烟;

12、铁丝在cl2中燃烧,产生棕色的烟; 13、hf腐蚀玻璃:4hf sio2 = sif4 2h2o

14、fe(oh)2在空气中被氧化:由白色变为灰绿最后变为红褐色;

15、在常温下:fe、al 在浓h2so4和浓hno3中钝化;

16、向盛有苯酚溶液的试管中滴入fecl3溶液,溶液呈紫色;苯酚遇空气呈粉红色。

17、蛋白质遇浓hno3变黄,被灼烧时有烧焦羽毛气味;

18、在空气中燃烧:s——微弱的淡蓝色火焰 h2——淡蓝色火焰 h2s——淡蓝色火焰

co——蓝色火焰 ch4——明亮并呈蓝色的火焰 s在o2中燃烧——明亮的蓝紫色火焰。

19.特征反应现象:

20.浅黄色固体:s或na2o2或agbr

21.使品红溶液褪色的气体:so2(加热后又恢复红色)、cl2(加热后不恢复红色)

22.有色溶液:fe2 (浅绿色)、fe3 (黄色)、cu2 (蓝色)、mno4-(紫色)

有色固体:红色(cu、cu2o、fe2o3)、红褐色[fe(oh)3]

蓝色[cu(oh)2] 黑色(cuo、feo、fes、cus、ag2s、pbs)

黄色(agi、ag3po4) 白色[fe(0h)2、caco3、baso4、agcl、baso3]

有色气体:cl2(黄绿色)、no2(红棕色)

四、 考试中经常用到的规律:

1、溶解性规律——见溶解性表; 2、常用酸、碱指示剂的变色范围:

指示剂 ph的变色范围

甲基橙 <3.1红色 3.1——4.4橙色 >4.4黄色

酚酞 <8.0无色 8.0——10.0浅红色 >10.0红色

石蕊 <5.1红色 5.1——8.0紫色 >8.0蓝色

3、在惰性电极上,各种离子的放电顺序:

阴极(夺电子的能力):au3 >ag >hg2 >cu2 >pb2 >fa2 >zn2 >h >al3 >mg2 >na >ca2 >k

阳极(失电子的能力):s2- >i- >br– >cl- >oh- >含氧酸根

注意:若用金属作阳极,电解时阳极本身发生氧化还原反应(pt、au除外)

4、双水解离子方程式的书写:(1)左边写出水解的离子,右边写出水解产物;

(2)配平:在左边先配平电荷,再在右边配平其它原子;(3)h、o不平则在那边加水。

例:当na2co3与alcl3溶液混和时:

3 co32- 2al3 3h2o = 2al(oh)3↓ 3co2↑

5、写电解总反应方程式的方法:(1)分析:反应物、生成物是什么;(2)配平。

例:电解kcl溶液: 2kcl 2h2o == h2↑ cl2↑ 2koh

配平: 2kcl 2h2o == h2↑ cl2↑ 2koh

6、将一个化学反应方程式分写成二个电极反应的方法:(1)按电子得失写出二个半反应式;(2)再考虑反应时的环境(酸性或碱性);(3)使二边的原子数、电荷数相等。

例:蓄电池内的反应为:pb pbo2 2h2so4 = 2pbso4 2h2o 试写出作为原电池(放电)时的电极反应。

写出二个半反应: pb –2e- → pbso4 pbo2 2e- → pbso4

分析:在酸性环境中,补满其它原子:

应为: 负极:pb so42- -2e- = pbso4

正极: pbo2 4h so42- 2e- = pbso4 2h2o

注意:当是充电时则是电解,电极反应则为以上电极反应的倒转:

为: 阴极:pbso4 2e- = pb so42-

阳极:pbso4 2h2o -2e- = pbo2 4h so42-

7、在解计算题中常用到的恒等:原子恒等、离子恒等、电子恒等、电荷恒等、电量恒等,用到的方法有:质量守恒、差量法、归一法、极限法、关系法、十字交法 和估算法。(非氧化还原反应:原子守恒、电荷平衡、物料平衡用得多,氧化还原反应:电子守恒用得多)

8、电子层结构相同的离子,核电荷数越多,离子半径越小;

9、晶体的熔点:原子晶体 >离子晶体 >分子晶体 中学学到的原子晶体有: si、sic 、sio2=和金刚石。原子晶体的熔点的比较是以原子半径为依据的:

金刚石 > sic > si (因为原子半径:si> c> o).

10、分子晶体的熔、沸点:组成和结构相似的物质,分子量越大熔、沸点越高。

11、胶体的带电:一般说来,金属氢氧化物、金属氧化物的胶体粒子带正电,非金属氧化物、金属硫化物的胶体粒子带负电。

12、氧化性:mno4- >cl2 >br2 >fe3 >i2 >s=4( 4价的s)

例: i2 so2 h2o = h2so4 2hi

13、含有fe3 的溶液一般呈酸性。

14、能形成氢键的物质:h2o 、nh3 、hf、ch3ch2oh 。

一些特殊的反应类型:

⑴ 化合物 单质 化合物 化合物 如:

cl2 h2o、h2s o2、、nh3 o2、ch4 o2、cl2 febr2

⑵ 化合物 化合物 化合物 单质

nh3 no、 h2s so2 、na2o2 h2o、nah h2o、na2o2 co2、co h2o

⑶ 化合物 单质 化合物

pcl3 cl2 、na2so3 o2 、fecl3 fe 、fecl2 cl2、co o2、na2o o2

15、氨水(乙醇溶液一样)的密度小于1,浓度越大,密度越小,硫酸的密度大于1,浓度越大,密度越大,98%的浓硫酸的密度为:1.84g/cm3。

16、离子是否共存:(1)是否有沉淀生成、气体放出;(2)是否有弱电解质生成;(3)是否发生氧化还原反应;(4)是否生成络离子[fe(scn)2、fe(scn)3、ag(nh3) 、[cu(nh3)4]2 等];(5)是否发生双水解。

17、地壳中:含量最多的金属元素是— al 含量最多的非金属元素是—o hclo4(高氯酸)—是最强的酸

18、熔点最低的金属是hg (-38.9c。),;熔点最高的是-、scn-等; h2po4-与po43-会生成hpo42-,故两者不共存.

九、离子方程式判断常见错误及原因分析

1.离子方程式书写的基本规律要求:(写、拆、删、查四个步骤来写)

(1)合事实:离子反应要符合客观事实,不可臆造产物及反应。

(2)式正确:化学式与离子符号使用正确合理。

(3)号实际:“=”“”“→”“↑”“↓”等符号符合实际。

(4)两守恒:两边原子数、电荷数必须守恒(氧化还原反应离子方程式中氧化剂得电子总数与还原剂失电子总数要相等)。

(5)明类型:分清类型,注意少量、过量等。

(6)检查细:结合书写离子方程式过程中易出现的错误,细心检查。

例如:(1)违背反应客观事实

如:fe2o3与氢碘酸:fe2o3 6h =2 fe3 3h2o错因:忽视了fe3 与i-发生氧化一还原反应

(2)违反质量守恒或电荷守恒定律及电子得失平衡

如:fecl2溶液中通cl2 :fe2 cl2=fe3 2cl- 错因:电子得失不相等,离子电荷不守恒

(3)混淆化学式(分子式)和离子书写形式

如:naoh溶液中通入hi:oh- hi=h2o i-错因:hi误认为弱酸.

(4)反应条件或环境不分:

如:次氯酸钠中加浓hcl:clo- h cl-=oh- cl2↑错因:强酸制得强碱

(5)忽视一种物质中阴、阳离子配比.

如:h2so4 溶液加入ba(oh)2溶液:ba2 oh- h so42-=baso4↓ h2o

正确:ba2 2oh- 2h so42-=baso4↓ 2h2o

(6)“=”“ ”“↑”“↓”符号运用不当

如:al3 3h2o=al(oh)3↓ 3h 注意:盐的水解一般是可逆的,al(oh)3量少,故不能打“↓”

2.判断离子共存时,审题一定要注意题中给出的附加条件。

⑴酸性溶液(h )、碱性溶液(oh-)、能在加入铝粉后放出可燃气体的溶液、由水电离出的h 或oh-=1?0-amol/l(a>7或a<7)的溶液等。

⑵有色离子mno4-,fe3 ,fe2 ,cu2 ,fe(scn)2 。

⑶mno4-,no3-等在酸性条件下具有强氧化性。

⑷s2o32-在酸性条件下发生氧化还原反应:s2o32- 2h =s↓ so2↑ h2o

⑸注意题目要求“一定大量共存”还是“可能大量共存”;“不能大量共存”还是“一定不能大量共存”。

⑹看是否符合题设条件和要求,如“过量”、“少量”、“适量”、“等物质的量”、“任意量”以及滴加试剂的先后顺序对反应的影响等。

十、中学化学实验操作中的七原则

1.“从下往上”原则。

2.“从左到右”原则。

3.先“塞”后“定”原则。

4.“固体先放”原则,“液体后加”原则。

5.先验气密性(装入药口前进行)原则。

6.后点酒精灯(所有装置装完后再点酒精灯)原则。

7.连接导管通气是长进短出原则。

十一、特殊试剂的存放和取用10例

1.na、k:隔绝空气;防氧化,保存在煤油中(或液态烷烃中),(li用石蜡密封保存)。用镊子取,玻片上切,滤纸吸煤油,剩余部分随即放人煤油中。

2.白磷:保存在水中,防氧化,放冷暗处。镊子取,立即放入水中用长柄小刀切取,滤纸吸干水分。

3.液br2:有毒易挥发,盛于磨口的细口瓶中,并用水封。瓶盖严密。

4.i2:易升华,且具有强烈刺激性气味,应保存在用蜡封好的瓶中,放置低温处。

5.浓hno3,agno3:见光易分解,应保存在棕色瓶中,放在低温避光处。

6.固体烧碱:易潮解,应用易于密封的干燥大口瓶保存。瓶口用橡胶塞塞严或用塑料盖盖紧。

7.nh3穐2o:易挥发,应密封放低温处。

8.c6h6、、c6h5—ch3、ch3ch2oh、ch3ch2och2ch3:易挥发、易燃,应密封存放低温处,并远离火源。

9.fe2 盐溶液、h2so3及其盐溶液、氢硫酸及其盐溶液:因易被空气氧化,不宜长期放置,应现用现配。

10.卤水、石灰水、银氨溶液、cu(oh)2悬浊液等,都要随配随用,不能长时间放置。

十二、中学化学中与“0”有关的实验问题4例及小数点问题

1.滴定管最上面的刻度是0。小数点为两位

2.量筒最下面的刻度是0。小数点为一位

3.温度计中间刻度是0。小数点为一位

4.托盘天平的标尺中央数值是0。小数点为一位

十三、能够做喷泉实验的气体

1、nh3、hcl、hbr、hi等极易溶于水的气体均可做喷泉实验。

2、co2、cl2、so2与氢氧化钠溶液;

3、c2h2、c2h2与溴水反应

十四、比较金属性强弱的依据

金属性:金属气态原子失去电子能力的性质;

金属活动性:水溶液中,金属原子失去电子能力的性质。

注:金属性与金属活动性并非同一概念,两者有时表现为不一致,

1、同周期中,从左向右,随着核电荷数的增加,金属性减弱;

同主族中,由上到下,随着核电荷数的增加,金属性增强;

2、依据最高价氧化物的水化物碱性的强弱;碱性愈强,其元素的金属性也愈强;

3、依据金属活动性顺序表(极少数例外);

4、常温下与酸反应剧烈程度;

5、常温下与水反应的剧烈程度;

6、与盐溶液之间的置换反应;

7、高温下与金属氧化物间的置换反应。

十五、比较非金属性强弱的依据

1、同周期中,从左到右,随核电荷数的增加,非金属性增强;

同主族中,由上到下,随核电荷数的增加,非金属性减弱;

2、依据最高价氧化物的水化物酸性的强弱:酸性愈强,其元素的非金属性也愈强;

3、依据其气态氢化物的稳定性:稳定性愈强,非金属性愈强;

4、与氢气化合的条件;

5、与盐溶液之间的置换反应;

6、其他,例:2cu scu2s cu cl2cucl2 所以,cl的非金属性强于s。

十六、“10电子”、“18电子”的微粒小结

1.“10电子”的微粒:

分子离子

一核10电子的nen3?、o2?、f?、na 、mg2 、al3

二核10电子的hfoh?、

三核10电子的h2onh2?

四核10电子的nh3h3o

五核10电子的ch4nh4

w.w.w.k.s.5.u.c.o.m

2.“18电子”的微粒

分子离子

一核18电子的ark 、ca2 、cl ̄、s2?

二核18电子的f2、hclhs?

三核18电子的h2s

四核18电子的ph3、h2o2

五核18电子的sih4、ch3f

六核18电子的n2h4、ch3oh

注:其它诸如c2h6、n2h5 、n2h62 等亦为18电子的微粒。

十七、微粒半径的比较:

1.判断的依据 电子层数: 相同条件下,电子层越多,半径越大。

核电荷数: 相同条件下,核电荷数越多,半径越小。

最外层电子数 相同条件下,最外层电子数越多,半径越大。

2.具体规律:1、同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外)如:na>mg>al>si>p>s>cl.

2、同主族元素的原子半径随核电荷数的增大而增大。如:li

3、同主族元素的离子半径随核电荷数的增大而增大。如:f--

4、电子层结构相同的离子半径随核电荷数的增大而减小。如:f-> na >mg2 >al3

5、同一元素不同价态的微粒半径,价态越高离子半径越小。如fe>fe2 >fe3

十八、各种“水”汇集

1.纯净物:重水d2o;超重水t2o;蒸馏水h2o;双氧水h2o2;水银hg; 水晶sio2。

2.混合物:氨水(分子:nh3、h2o、nh3穐2o;离子:nh4 、oh ̄、h )

氯水(分子:cl2、h2o、hclo;离子:h 、cl ̄、clo ̄、oh ̄)

苏打水(na2co3的溶液) 生理盐水(0.9%的nacl溶液)

水玻璃(na2sio3水溶液) 卤水(mgcl2、nacl及少量mgso4)

水泥(2cao穝io2、3cao穝io2、3cao穉l2o3)

王水(由浓hno3和浓盐酸以1∶3的体积比配制成的混合物)

十九、具有漂白作用的物质

氧化作用化合作用吸附作用

cl2、o3、na2o2、浓hno3 so2 活性炭

化学变化物理变化

不可逆可逆

其中能氧化指示剂而使指示剂褪色的主要有cl2(hclo)和浓hno3及na2o2

二十、各种“气”汇集

1.无机的:爆鸣气(h2与o2); 水煤气或煤气(co与h2);碳酸气(co2)

2.有机的:天然气(又叫沼气、坑气,主要成分为ch4)

液化石油气(以丙烷、丁烷为主) 裂解气(以ch2=ch2为主) 焦炉气(h2、ch4等)

电石气(ch≡ch,常含有h2s、ph3等)

高中化学必背知识点归纳与总结


一、俗名

无机部分:

纯碱、苏打、天然碱 、口碱:na2co3 小苏打:nahco3 大苏打:na2s2o3 石膏(生石膏):caso4.2h2o 熟石膏:2caso4?h2o 莹石:caf2 重晶石:baso4(无毒) 碳铵:nh4hco3 石灰石、大理石:caco3 生石灰:cao 食盐:nacl 熟石灰、消石灰:ca(oh)2 芒硝:na2so4?h2o (缓泻剂) 烧碱、火碱、苛性钠:naoh 绿矾:faso4?h2o 干冰:co2 明矾:kal (so4)2?2h2o 漂白粉:ca (clo)2 、cacl2(混和物) 泻盐:mgso4?h2o 胆矾、蓝矾:cuso4?h2o 双氧水:h2o2 皓矾:znso4?h2o 硅石、石英:sio2 刚玉:al2o3 水玻璃、泡花碱、矿物胶:na2sio3 铁红、铁矿:fe2o3 磁铁矿:fe3o4 黄铁矿、硫铁矿:fes2 铜绿、孔雀石:cu2 (oh)2co3 菱铁矿:feco3 赤铜矿:cu2o 波尔多液:ca (oh)2和cuso4 石硫合剂:ca (oh)2和s 玻璃的主要成分:na2sio3、casio3、sio2 过磷酸钙(主要成分):ca (h2po4)2和caso4 重过磷酸钙(主要成分):ca (h2po4)2 天然气、沼气、坑气(主要成分):ch4 水煤气:co和h2 硫酸亚铁铵(淡蓝绿色):fe (nh4)2 (so4)2 溶于水后呈淡绿色

光化学烟雾:no2在光照下产生的一种有毒气体 王水:浓hno3:浓hcl按体积比1:3混合而成。

铝热剂:al fe2o3或其它氧化物。 尿素:co(nh2)2

有机部分:

氯仿:chcl3 电石:cac2 电石气:c2h2 (乙炔) tnt:三硝基甲苯

氟氯烃:是良好的制冷剂,有毒,但破坏o3层。 酒精、乙醇:c2h5oh

裂解气成分(石油裂化):烯烃、烷烃、炔烃、h2s、co2、co等。

焦炉气成分(煤干馏):h2、ch4、乙烯、co等。 醋酸:冰醋酸、食醋 ch3cooh

甘油、丙三醇 :c3h8o3 石炭酸:苯酚 蚁醛:甲醛 hcho

福尔马林:35%—40%的甲醛水溶液 蚁酸:甲酸 hcooh

葡萄糖:c6h12o6 果糖:c6h12o6 蔗糖:c12h22o11 麦芽糖:c12h22o11 淀粉:(c6h10o5)n

硬脂酸:c17h35cooh 油酸:c17h33cooh 软脂酸:c15h31cooh

草酸:乙二酸 hooc—cooh (能使蓝墨水褪色,呈强酸性,受热分解成co2和水,使kmno4酸性溶液褪色)。

二、 颜色

铁:铁粉是黑色的;一整块的固体铁是银白色的。

fe2 ——浅绿色 fe3o4——黑色晶体 fe(oh)2——白色沉淀

fe3 ——黄色 fe (oh)3——红褐色沉淀 fe (scn)3——血红色溶液

feo——黑色的粉末 fe (nh4)2(so4)2——淡蓝绿色

fe2o3——红棕色粉末

铜:单质是紫红色

cu2 ——蓝色 cuo——黑色 cu2o——红色

cuso4(无水)—白色 cuso4?h2o——蓝色

cu2(oh)2co3 —绿色

cu(oh)2——蓝色 [cu(nh3)4]so4——深蓝色溶液

fes——黑色固体

baso4 、baco3 、ag2co3 、caco3 、agcl 、 mg (oh)2 、三溴苯酚均是白色沉淀

al(oh)3 白色絮状沉淀 h4sio4(原硅酸)白色胶状沉淀

cl2、氯水——黄绿色 f2——淡黄绿色气体 br2——深红棕色液体

i2——紫黑色固体 hf、hcl、hbr、hi均为无色气体,在空气中均形成白雾

ccl4——无色的液体,密度大于水,与水不互溶

na2o2—淡黄色固体 ag3po4—黄色沉淀 s—黄色固体 agbr—浅黄色沉淀

agi—黄色沉淀 o3—淡蓝色气体 so2—无色,有剌激性气味、有毒的气体

so3—无色固体(沸点44.8度) 品红溶液——红色 氢氟酸:hf——腐蚀玻璃

n2o4、no——无色气体 no2——红棕色气体

nh3——无色、有剌激性气味气体 kmno4--——紫色 mno4-——紫色

三、 现象:

1、铝片与盐酸反应是放热的,ba(oh)2与nh4cl反应是吸热的;

2、na与h2o(放有酚酞)反应,熔化、浮于水面、转动、有气体放出;(熔、浮、游、嘶、红)

3、焰色反应:na 黄色、k紫色(透过蓝色的钴玻璃)、cu 绿色、ca砖红、na (黄色)、k (紫色)。

4、cu丝在cl2中燃烧产生棕色的烟; 5、h2在cl2中燃烧是苍白色的火焰;

6、na在cl2中燃烧产生大量的白烟; 7、p在cl2中燃烧产生大量的白色烟雾;

8、so2通入品红溶液先褪色,加热后恢复原色;

9、nh3与hcl相遇产生大量的白烟; 10、铝箔在氧气中激烈燃烧产生刺眼的白光;

11、镁条在空气中燃烧产生刺眼白光,在co2中燃烧生成白色粉末(mgo),产生黑烟;

12、铁丝在cl2中燃烧,产生棕色的烟; 13、hf腐蚀玻璃:4hf sio2 = sif4 2h2o

14、fe(oh)2在空气中被氧化:由白色变为灰绿最后变为红褐色;

15、在常温下:fe、al 在浓h2so4和浓hno3中钝化;

16、向盛有苯酚溶液的试管中滴入fecl3溶液,溶液呈紫色;苯酚遇空气呈粉红色。

17、蛋白质遇浓hno3变黄,被灼烧时有烧焦羽毛气味;

18、在空气中燃烧:s——微弱的淡蓝色火焰 h2——淡蓝色火焰 h2s——淡蓝色火焰

co——蓝色火焰 ch4——明亮并呈蓝色的火焰 s在o2中燃烧——明亮的蓝紫色火焰。

19.特征反应现象:

20.浅黄色固体:s或na2o2或agbr

21.使品红溶液褪色的气体:so2(加热后又恢复红色)、cl2(加热后不恢复红色)

22.有色溶液:fe2 (浅绿色)、fe3 (黄色)、cu2 (蓝色)、mno4-(紫色)

有色固体:红色(cu、cu2o、fe2o3)、红褐色[fe(oh)3]

蓝色[cu(oh)2] 黑色(cuo、feo、fes、cus、ag2s、pbs)

黄色(agi、ag3po4) 白色[fe(0h)2、caco3、baso4、agcl、baso3]

有色气体:cl2(黄绿色)、no2(红棕色)

四、 考试中经常用到的规律:

1、溶解性规律——见溶解性表; 2、常用酸、碱指示剂的变色范围:

指示剂 ph的变色范围

甲基橙 <3.1红色 3.1——4.4橙色 >4.4黄色

酚酞 <8.0无色 8.0——10.0浅红色 >10.0红色

石蕊 <5.1红色 5.1——8.0紫色 >8.0蓝色

3、在惰性电极上,各种离子的放电顺序:

阴极(夺电子的能力):au3 >ag >hg2 >cu2 >pb2 >fa2 >zn2 >h >al3 >mg2 >na >ca2 >k

阳极(失电子的能力):s2->i- >br– >cl- >oh- >含氧酸根

注意:若用金属作阳极,电解时阳极本身发生氧化还原反应(pt、au除外)

4、双水解离子方程式的书写:(1)左边写出水解的离子,右边写出水解产物;

(2)配平:在左边先配平电荷,再在右边配平其它原子;(3)h、o不平则在那边加水。

例:当na2co3与alcl3溶液混和时:

3 co32- 2al3 3h2o = 2al(oh)3↓ 3co2↑

5、写电解总反应方程式的方法:(1)分析:反应物、生成物是什么;(2)配平。

例:电解kcl溶液: 2kcl 2h2o == h2↑ cl2↑ 2koh

配平: 2kcl 2h2o == h2↑ cl2↑ 2koh

6、将一个化学反应方程式分写成二个电极反应的方法:(1)按电子得失写出二个半反应式;(2)再考虑反应时的环境(酸性或碱性);(3)使二边的原子数、电荷数相等。

例:蓄电池内的反应为:pb pbo2 2h2so4 = 2pbso4 2h2o试写出作为原电池(放电)时的电极反应。

写出二个半反应: pb –2e- → pbso4 pbo2 2e- → pbso4

分析:在酸性环境中,补满其它原子:

应为: 负极:pb so42- -2e- = pbso4

正极: pbo2 4h so42- 2e- = pbso4 2h2o

注意:当是充电时则是电解,电极反应则为以上电极反应的倒转:

为: 阴极:pbso4 2e- = pb so42-

阳极:pbso4 2h2o-2e- = pbo2 4h so42-

7、在解计算题中常用到的恒等:原子恒等、离子恒等、电子恒等、电荷恒等、电量恒等,用到的方法有:质量守恒、差量法、归一法、极限法、关系法、十字交法和估算法。(非氧化还原反应:原子守恒、电荷平衡、物料平衡用得多,氧化还原反应:电子守恒用得多)

8、电子层结构相同的离子,核电荷数越多,离子半径越小;

9、晶体的熔点:原子晶体 >离子晶体 >分子晶体 中学学到的原子晶体有: si、sic 、sio2=和金刚石。原子晶体的熔点的比较是以原子半径为依据的:

金刚石 > sic> si (因为原子半径:si>c> o).

10、分子晶体的熔、沸点:组成和结构相似的物质,分子量越大熔、沸点越高。

11、胶体的带电:一般说来,金属氢氧化物、金属氧化物的胶体粒子带正电,非金属氧化物、金属硫化物的胶体粒子带负电。

12、氧化性:mno4- >cl2 >br2 >fe3 >i2 >s=4( 4价的s)

例: i2 so2 h2o = h2so4 2hi

13、含有fe3 的溶液一般呈酸性。 14、能形成氢键的物质:h2o 、nh3 、hf、ch3ch2oh 。

15、氨水(乙醇溶液一样)的密度小于1,浓度越大,密度越小,硫酸的密度大于1,浓度越大,密度越大,98%的浓硫酸的密度为:1.84g/cm3。

16、离子是否共存:(1)是否有沉淀生成、气体放出;(2)是否有弱电解质生成;(3)是否发生氧化还原反应;(4)是否生成络离子[fe(scn)2、fe(scn)3、ag(nh3) 、[cu(nh3)4]2 等];(5)是否发生双水解。

17、地壳中:含量最多的金属元素是— al 含量最多的非金属元素是—o hclo4(高氯酸)—是最强的酸

18、熔点最低的金属是hg (-38.9c。),;熔点最高的是w(钨3410c);密度最小(常见)的是k;密度最大(常见)是pt。

19、雨水的ph值小于5.6时就成为了酸雨。

20、有机酸酸性的强弱:乙二酸 >甲酸 >苯甲酸 >乙酸 >碳酸 >苯酚 >hco3-

21、有机鉴别时,注意用到水和溴水这二种物质。

例:鉴别:乙酸乙酯(不溶于水,浮)、溴苯(不溶于水,沉)、乙醛(与水互溶),则可用水。

22、取代反应包括:卤代、硝化、磺化、卤代烃水解、酯的水解、酯化反应等;

23、最简式相同的有机物,不论以何种比例混合,只要混和物总质量一定,完全燃烧生成的co2、h2o及耗o2的量是不变的。恒等于单一成分该质量时产生的co2、h2o和耗o2量。

24、可使溴水褪色的物质如下,但褪色的原因各自不同:

烯、炔等不饱和烃(加成褪色)、苯酚(取代褪色)、乙醇、醛、甲酸、草酸、葡萄糖等(发生氧化褪色)、有机溶剂[ccl4、氯仿、溴苯、cs2(密度大于水),烃、苯、苯的同系物、酯(密度小于水)]发生了萃取而褪色。

25、能发生银镜反应的有:醛、甲酸、甲酸盐、甲酰铵(hcnh2o)、葡萄溏、果糖、麦芽糖,均可发生银镜反应。(也可同cu(oh)2反应)

计算时的关系式一般为:—cho—— 2ag

注意:当银氨溶液足量时,甲醛的氧化特殊: hcho —— 4ag ↓ h2co3

反应式为:hcho 4[ag(nh3)2]oh = (nh4)2co3 4ag↓ 6nh3↑ 2h2o

26、胶体的聚沉方法:(1)加入电解质;(2)加入电性相反的胶体;(3)加热。

常见的胶体:液溶胶:fe(oh)3、agi、牛奶、豆浆、粥等;气溶胶:雾、云、烟等;固溶胶:有色玻璃、烟水晶等。

27、污染大气气体:so2、co、no2、no,其中so2、no2形成酸雨。

28、环境污染:大气污染、水污染、土壤污染、食品污染、固体废弃物污染、噪声污染。工业三废:废渣、废水、废气。

29、在室温(20c。)时溶解度在10克以上——易溶;大于1克的——可溶;小于1克的——微溶;小于0.01克的——难溶。

30、人体含水约占人体质量的2/3。地面淡水总量不到总水量的1%。当今世界三大矿物燃料是:煤、石油、天然气。石油主要含c、h地元素。

31、生铁的含c量在:2%——4.3% 钢的含c量在:0.03%——2% 。粗盐:是nacl中含有mgcl2和 cacl2,因为mgcl2吸水,所以粗盐易潮解。浓hno3在空气中也形成白雾。固体naoh在空气中易吸水形成溶液。

32、气体溶解度:在一定的压强和温度下,1体积水里达到饱和状态时气体的体积。

初中数学总结归纳知识点(10篇)


经过反复磨练和修整工作总结之家终于完成了这篇“初中数学总结归纳知识点”,也许这篇文章能够启发您对这个问题的思考。处理文档是一种有效的思维和学习方式,动笔之前一般会搜集相关范文, 多看范文不仅可以获取知识,还能让我们处理工作更加轻松。

初中数学总结归纳知识点【篇1】

1、被动学习。许多同学进初中入后,还像小学那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到门道。

2、学不得法。

老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

3、不重视基础。

一些自我感觉良好的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的水平,好高鹜远,重量轻质,陷入题海。到正规作业或考试中不是演算出错就是中途卡壳。

4、思维方式和学习方法不适应数学学习要求。

初二阶段是数学学习分化最明显的阶段。一个重要原因是初中阶段数学课程对学生抽象逻辑思维能力要求有了明显提高。而初二学生正处于由直观形象思维为主向以抽象逻辑思维为主过渡的又一个关键期,没有形成比较成熟的抽象逻辑思维方式,而且学生个体差异也比较大,有的抽象逻辑思维能力发展快一些,有的则慢一些,因此表现出数学学习接受能力的差异。除了年龄特征因素以外,更重要的是教师没有很好地根据学生的实际和教学要求去组织教学活动,指导学生掌握有效的学习方法,促进学生抽象逻辑思维的发展,提高学习能力和学习适应性。

初中数学总结归纳知识点【篇2】

初中数学知识点总结归纳

棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。

棱锥的的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

esp:

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

初中数学知识点总结归纳

幂函数的性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的`各自情况。

可以看到:

(1)所有的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

解题方法:换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

练习题:

1、若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。

(1)求f(log2x)的最小值及对应的x值;

(2)x取何值时,f(log2x)>f(1)且log2[f(x)]

2、已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f-1(x)图象上的点。

(1)求实数k的值及函数f-1(x)的解析式;

(2)将y=f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求实数m的取值范围。

初中数学知识点总结归纳

一、函数的概念与表示

1、映射

(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射

2、函数

构成函数概念的三要素

①定义域②对应法则③值域

两个函数是同一个函数的条件:三要素有两个相同

二、函数的解析式与定义域

1、求函数定义域的主要依据:

(1)分式的分母不为零;

(2)偶次方根的被开方数不小于零,零取零次方没有意义;

(3)对数函数的真数必须大于零;

(4)指数函数和对数函数的底数必须大于零且不等于1;

三、函数的值域

1、求函数值域的方法

①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;

②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;

④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);

⑤单调性法:利用函数的单调性求值域;

⑥图象法:二次函数必画草图求其值域;

⑦利用对号函数

⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

四、函数的奇偶性

1、定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

如果对于任意∈A,都有,则称y=f(x)为奇函数。

2、性质:

①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称

②若函数f(x)的定义域关于原点对称,则f(0)=0

③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]

3、奇偶性的判断

①看定义域是否关于原点对称②看f(x)与f(-x)的关系

五、函数的单调性

1、函数单调性的定义:

2、设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

初中数学知识点总结归纳

1、多面体的结构特征

(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥。特别地,各棱均相等的正三棱锥叫正四面体。反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。

2、旋转体的结构特征

(1)圆柱可以由矩形绕一边所在直线旋转一周得到。

(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到。

(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。

(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。

3、空间几何体的三视图

空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。

三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。

4、空间几何体的直观图

空间几何体的直观图常用斜二测画法来画,基本步骤是:

(1)画几何体的底面

在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴。已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。

(2)画几何体的高

在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。

初中数学知识点总结归纳

1、集合的概念

集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。

对象――即集合中的元素。集合是由它的元素确定的。

整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。

确定的――集合元素的确定性――元素与集合的“从属”关系。

不同的――集合元素的互异性。

2、有限集、无限集、空集的意义

有限集和无限集是针对非空集合来说的。我们理解起来并不困难。

我们把不含有任何元素的集合叫做空集,记做Φ。理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。

3、集合的表示方法

(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:

①元素不太多的有限集,如{0,1,8}

②元素较多但呈现一定的规律的有限集,如{1,2,3,…,100}

③呈现一定规律的无限集,如{1,2,3,…,n,…}

●注意a与{a}的区别

●注意用列举法表示集合时,集合元素的“无序性”。

(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。但关键点也是难点。学习时多加练习就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。

4、集合之间的关系

●注意区分“从属”关系与“包含”关系

“从属”关系是元素与集合之间的关系。

“包含”关系是集合与集合之间的关系。掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn图描述集合之间的关系是基本要求。

●注意辨清Φ与{Φ}两种关系。

初中数学总结归纳知识点【篇3】

一、什么是等式?1+1=1是等式吗?

表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。

一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。

等式与代数式不同,等式中含有等号,代数式中不含等号。

等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。

二、什么是方程,什么是一元一次方程?

含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。

只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是已知数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。如果将上面的方程进行化简,则为x=2,这时再去作判断,将得到错误的结论。

凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。

三、等式有什么牛掰的基本性质吗?

将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。

移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。

去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。

四、等式一定是方程吗?方程一定是等式吗?

等式与方程有很多相同之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的说法是不对的。

五、"解方程"与"方程的解"是一回事儿吗?

方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。

初中数学总结归纳知识点【篇4】

1.一元一次方程:

只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:

ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3.条件:一元一次方程必须同时满足4个条件:

(1)它是等式;

(2)分母中不含有未知数;

(3)未知数最高次项为1;

(4)含未知数的项的系数不为0.

4.等式的性质:

等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5.合并同类项

(1)依据:乘法分配律

(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项

(3)合并时次数不变,只是系数相加减。

6.移项

(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

(2)依据:等式的性质

(3)把方程一边某项移到另一边时,一定要变号。

7.一元一次方程解法的一般步骤:

使方程左右两边相等的未知数的值叫做方程的解。

一般解法:

(1)去分母:在方程两边都乘以各分母的最小公倍数;

(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

(4)合并同类项:把方程化成ax=b(a≠0)的形式;

(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.

8.同解方程

如果两个方程的解相同,那么这两个方程叫做同解方程。

9.方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

初中数学总结归纳知识点【篇5】

首先你要有一个好的态度,有些人学习数学,可能有的阶段会喜欢学习,但是某一阶段,对数学就没有什么兴趣了,可能每个人都会有这样一个阶段,但是如果发现自己不喜欢学习数学了,一定要克制自己,在学习数学上,保持一个良好的学习态度,这是你学好数学的第一步。

充分的利用好上课的时间,上课时间你所掌握的知识,会比你在课下学很长时间都有用,所以珍惜课堂老师所讲的内容,老师的某些话对我们以后做数学题都很有帮助,如果你上课走神,这些话没有听到,你在做题的时候,可能会走很多弯路,做题的效率也会降低,一旦有这样的情况,可能你就会不喜欢数学了。

学习最重要的是思考,会思考数学才能学好,数学中的题都是需要我们去举一反三的,没做一道题,都要思考一下,围绕着这道题的知识点,还会有什么样的题型出现,哪怕是遇到不会的题,也要勤加的思考,如果你把知识点自认为学习透彻,那么就用做题检验吧,数学中多做题是必须的,成绩都是用题堆积出来的,很少会有人不做题数学成绩很高的。

初中数学总结归纳知识点【篇6】

归类记忆法就是根据识记材料的性质、特征及其内在联系,进行归纳分类,以便帮助学生记忆大量的知识。比如,学完计量单位后,可以把学过的所有内容归纳为五类:长度单位;面积单位;体积和容积单位;重量单位;时间单位。这样归类,能够把纷纭复杂的事物系统化、条理化,易于记忆。

歌诀记忆法就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:量角器放角上,中心对准顶点,零线对着一边,另一边看度数。再如,小数点位置移动引起数的大小变化,小数点请你跟我走,走路先要找准左和右;横撇带口是个you,扩大向you走走走;横撇加个zuo,缩小向zuo走走走;十倍走一步百倍两步走,数位不够找0拉拉钩。采用这种方法来记忆,学生不仅喜欢记,而且记得牢。

规律记忆法。

即根据事物的内在联系,找出规律性的东西来进行记忆。比如,识记长度单位、面积单位、体积单位的化法和聚法。化法和聚法是互逆联系,即高级单位的数值进率=低级单位的数值,低级单位的数值进率=高级单位的数值。掌握了这两条规律,化聚问题就迎刃而解了。规律记忆,需要学生开动脑筋对所学的有关材料进行加工和组织,因而记忆牢固。

列表记忆法就是把某些容易混淆的识记材料列成表格,达到记忆之目的。这种方法具有明显性、直观性和对比性。比如,要识记质数、质因数、互质数这三个概念的区别,就可列成表来帮助学生记忆。

重点记忆法随着年龄的增长,所学的数学知识也越来越多,学生要想全面记住,既浪费时间且记忆效果不佳。因此,要让学生学会记忆重点内容,学生在记住了重点内容的基础上,再通过推导、联想等方法便可记住其他内容了。比如,学习常见的数量关系:工作效率工作时间=工作量。工作量工作效率=工作时间;工作量+工作时间=工作效率。这三者关系中只要记住了第一个数量关系,后面两个数量关系就可根据乘法和除法的关系推导出来。这样去记,减轻了学生记忆的负担,提高了记忆的效率。

联想记忆法就是通过一件熟悉的事物想到与它有联系的另一件事物来进行记忆。

初中数学总结归纳知识点【篇7】

一、圆及圆的相关量的定义

1、平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

3、顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

6、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

7、在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

二、有关圆的基本性质与定理

1、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO2、圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。3、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。4、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。5、一条弧所对的圆周角等于它所对的圆心角的一半。6、直径所对的圆周角是直角。90度的圆周角所对的弦是直径。7、不在同一直线上的3个点确定一个圆。8、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。9、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO。10、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。11、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):外离P>R+r;外切P=R+r;相交R—r。三、圆的方程1、圆的标准方程在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是:(x—a)^2+(y—b)^2=r^22、圆的一般方程把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是:x^2+y^2+Dx+Ey+F=0和标准方程对比,其实D=—2a,E=—2b,F=a^2+b^2。相关知识:圆的离心率e=0、在圆上任意一点的曲率半径都是r。四、圆的定理1、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。推论2:圆的两条平行弦所夹的弧相等。2、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。3、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。4、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。5、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

初中数学总结归纳知识点【篇8】

一、基本知识

一、数与代数

A、数与式:

1、有理数:①整数→正整数,0,负整数;

②分数→正分数,负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:带上符号进行正常运算。

加法:

①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数或指数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数

无理数

无理数:无限不循环小数叫无理数,例如:π=3.1415926…

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根;0的平方根为0;负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样;

③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项;②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:

A^M+A^N=A^(M+N)

(A^M)^N=A^(MN

(A/B)^N=A^N/B^N

除法一样。

整式的乘法:

①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的.积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式:A^2-B^2=(A+B)(A-B);

完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。

B、方程与不等式

1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

解二元一次方程组的方法:代入消元法;加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程:ax^2+bx+c=0;

1)一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y=0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图像与X轴的交点。也就是该方程的解了

2)一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a

,4ac-b^2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法

这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

3)解一元二次方程的步骤:

(1)配方法的步骤:

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

(2)分解因式法的步骤:

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

(3)公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4)韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

5)一元二次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao

ta”,而△=b2-4ac,这里可以分为3种情况:

I当△>0时,一元二次方程有2个不相等的实数根;

II当△=0时,一元二次方程有2个相同的实数根;

III当△B,则A+C>B+C;

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;

例如:如果A>B,则A-C>B-C;

在不等式中,如果乘以同一个正数,不等式符号不改向;

例如:如果A>B,则A*C>B*C(C>0);

在不等式中,如果乘以同一个负数,不等号改向;

例如:如果A>B,则A*C

如果不等式乘以0,那么不等号改为等号;

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘的数就不等于0,否则不等式不成立;

3、函数

变量:因变量Y,自变量X。

在用图像表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图像:

①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像。

②正比例函数Y=KX的图像是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O时,则经234象限;

当K〈0,B〉0时,则经124象限;

当K〉0,B〈0时,则经134象限;

当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

二空间与图形

A、图形的认识

1、点,线,面

点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱,上下底面就是N边形。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

③将线段的两端无限延长就形成了直线。直线没有端点。

④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。两点之间直线最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。即:60分为1度,60秒为1分。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角,180。始边继续旋转,当他又和始边重合时,所成的角叫做周角,360。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上;

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的:角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角的角平分线就是到角两边距离相等的点的集合。

性质定理:角平分线上的点到该角两边的距离相等;

判定定理:到角的两边距离相等的点在该角的角平分线上;

正方形:一组邻边相等的矩形是正方形

性质:正方形具有平行四边形、菱形、矩形的一切性质

判定:1、对角线相等的菱形2、邻边相等的矩形

二、基本定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

——补角=180-角度。

4、同角或等角的余角相等——余角=90-角度。

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、定理

三角形两边的和大于第三边

16、推论

三角形两边的差小于第三边

17、三角形内角和定理:

三角形三个内角的和等于180°

18、推论1

直角三角形的两个锐角互余

19、推论2

三角形的一个外角等于和它不相邻的两个内角的和

20、推论3

三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理(

ASA):有两角和它们的夹边对应相等的

两个三角形全等

24、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(SSS):有三边对应相等的两个三角形全等

26、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

27、定理1

在角的平分线上的点到这个角的两边的距离相等

28、定理2

到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的集合

30、推论1

等腰三角形顶角的平分线平分底边并且垂直于底边

31、推论2等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,即三线合一;

32、推论3

等边三角形的各角都相等,并且每一个角都等于60°

33、等腰三角形的判定定理

如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

34、等腰三角形的性质定理

等腰三角形的两个底角相等

(即等边对等角)

35、推论1

三个角都相等的三角形是等边三角形

36、推论

有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38、直角三角形斜边上的中线等于斜边上的一半

39、定理

线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理

和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、定理1

关于某条直线对称的两个图形是全等形

43、定理

如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3

两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理

如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理

直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

47、勾股定理的逆定理

如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

48、定理

四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理

n边形的内角的和等于(n-2)×180°

51、推论

任意多边的外角和等于360°

52、平行四边形性质定理1

平行四边形的对角相等

53、平行四边形性质定理2

平行四边形的对边相等

54、推论

夹在两条平行线间的平行线段相等

55、平行四边形性质定理3

平行四边形的对角线互相平分

56、平行四边形判定定理1

两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2

两组对边分别相等的四边

形是平行四边形

58、平行四边形判定定理3

对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4

一组对边平行相等的四边形是平行四边形

60、矩形性质定理1

矩形的四个角都是直角

61、矩形性质定理2

矩形的对角线相等

62、矩形判定定理1

有三个角是直角的四边形是矩形

63、矩形判定定理2

对角线相等的平行四边形是矩形

64、菱形性质定理1

菱形的四条边都相等

65、菱形性质定理2

菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

67、菱形判定定理1

四边都相等的四边形是菱形

68、菱形判定定理2

对角线互相垂直的平行四边形是菱形

69、正方形性质定理1

正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、定理1

关于中心对称的两个图形是全等的

72、定理2

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理

等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理

在同一底上的两个角相等的梯

形是等腰梯形

77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理

如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79、推论1

经过梯形一腰的中点与底平行的直线,必平分另一腰

80、推论2

经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理

三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理

梯形的中位线平行于两底,并且等于两底和的一半

L=(a+b)÷2

S=L×h

83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

如果

ad=bc,那么a:b=c:d

84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行线分线段成比例定理

三条平行线截两条直线,所得的对应线段成比例

87、推论

平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88、定理

如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89、平行于三角形的一边,并且和其他两边相交的直线,

所截得的三角形的三边与原三角形三边对应成比例

90、定理

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91、相似三角形判定定理1

两角对应相等,两三角形相似(ASA)

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93、判定定理2

两边对应成比例且夹角相等,两三角形相似(SAS)

94、判定定理3

三边对应成比例,两三角形相似(SSS)

95、定理

如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似(HL)

96、性质定理1

相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理2

相似三角形周长的比等于相似比

98、性质定理3

相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

(a

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

101、圆是定点的距离等于定长的点的集合

102、圆的内部可以看作是圆心的距离小于半径的点的集合

103、圆的外部可以看作是圆心的距离大于半径的点的集合

104、同圆或等圆的半径相等

105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109、定理

不在同一直线上的三点确定一个圆。

110、垂径定理

垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111、推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧(直径)

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112、推论2

圆的两条平行弦所夹的弧相等

113、圆是以圆心为对称中心的中心对称图形

114、定理

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115、推论

在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116、定理

一条弧所对的圆周角等于它所对的圆心角的一半

117、推论1

同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118、推论2

半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119、推论3

如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120、定理

圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121、①直线L和⊙O相交

0

②直线L和⊙O相切

d=r

③直线L和⊙O相离

d>r

122、切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线

123、切线的性质定理

圆的切线垂直于经过切点的半径

124、推论1

经过圆心且垂直于切线的直线必经过切点

125、推论2

经过切点且垂直于切线的直线必经过圆心

126、切线长定理

从圆外一点引圆的两条切线相交与一点,它们的切线长相等

,圆心和这一点的连线平分两条切线的夹角

127、圆的外切四边形的两组对边的和相等

128、弦切角定理

弦切角等于它所夹的弧对的圆周角?

129、推论

如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130、相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积相等

131、推论

如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132、切割线定理

从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项?

133、推论

从圆外一点引圆的两条割线,这一点到每条

割线与圆的交点的两条线段长的积相等

134、如果两个圆相切,那么切点一定在连心线上

135、①两圆外离

d>R+r

②两圆外切

d=R+r

③两圆相交

R-r<d<R+r(R>r)

④两圆内切

d=R-r(R>r)

⑤两圆内含

d<R-r(R>r)

136、定理

相交两圆的连心线垂直平分两圆的公共弦

137、定理

把圆平均分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138、定理

任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139、正n边形的每个内角都等于(n-2)×180°/n

140、定理

正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141、正n边形的面积Sn=pn*rn/2

p表示正n边形的周长

142、正三角形面积√3a^2/4

a表示边长

143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144、弧长计算公式:L=n兀R/180——》L=nR

145、扇形面积公式:S扇形=n兀R^2/360=LR/2

146、内公切线长=d-(R-r)

外公切线长=d-(R+r)

初中数学总结归纳知识点【篇9】

一、一次函数图象y=kx+b

一次函数的图象可以由k、b的正负来决定:

k大于零是一撇(由左下至右上,增函数)

k小于零是一捺(由右上至左下,减函数)

b等于零必过原点;

b大于零交点(指图象与y轴的交点)在上方(指x轴上方)

b小于零交点(指图象与y轴的交点)在下方(指x轴下方)

其图象经过(0,b)和(-b/k,0)这两点(两点就可以决定一条直线),且(0,b)在y轴上,(-b/k,0)在x轴上。

b的数值就是一次函数在y轴上的截距(不是距离,有正、负、零之分)。

二、不等式组的解集

1、步骤:去分母(后分子应加上括号)、去括号、移项、合并同类项、系数化为1。

2、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a

A的解集是解集小小的取小

B的解集是解集大大的取大

C的解集是解集大小的小大的取中间

D的解集是空集解集大大的小小的无解

另需注意等于的问题。

三、零的描述

1、零既不是正数也不是负数,是介于正数和负数之间的数。零是自然数,是整数,是偶数。

A、零是表示具有相反意义的量的基准数。

B、零是判定正、负数的界限。

C、在一切非负数中有一个最小值是0;在一切非正数中有一个最大值是0。

2、零的运算性质

A、乘方:零的正整数次幂都是零。

B、除法:零除以任何不等于零的数都得零;零不能作除数;0没有倒数。

C、乘法:零乘以任何数都得零。ab=0a、b中至少有一个是0。

D、加法a、b互为相反数a+b=0

E、减法(比较大小用)a-b=0a=b;a-b0ab;a-b0a

3、在近似数中,当0作为有效数字时,它表示不同的精确度,不能省略。

四、因式分解分解方法

首先提取公因式,然后依次用公式,十字相乘,分组分解法,若都不行,再拆项添项试一试。必须进行到每一个多项式因式不能再分解为止

1、提公因式法

首先观察多项式的结构特点,确定多项式的公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。

2、公式

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2,还立方差和及其他公式

3、十字相乘

运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解。

将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

①列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数。

4、分组分解法

多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式、十字相乘法分解因式。如果把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

再提公因式(m+n)

a(m+n)+b(m+n)

=(m+n)?(a+b)。

可见如把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。

初中数学总结归纳知识点【篇10】

一、课内重视听讲,课后及时复习

初中数学的能力培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与老师讲的有那些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,一定要让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,并养成良好的解题习惯。

要想学好初中数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要以基础题目入手,以课上的题目为准,提高自己的分析解决能力,掌握一般的解题思路。对于一些易错题,可备有错题集,写出自己的解题思路、正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。在平时养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键的时候,你所表现的解题习惯与平时解题无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态、正确对待考试

首先,把主要精力放在基础知识、基本技能、基本方法这三个方面上。因为每次考试占绝大部分的是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳,调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能把我打垮的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前在保证正确率的前提下提高解题速度。对于一些容易的基础题,要有十二分的把握拿满分;对于一些难题,也要尽量拿分,考试中要尝试得分,使自己的水平正常甚至超常发挥。

1.初三数学中考总复习计划

2.中考数学复习计划

3.初中生数学学习心得

4.人教版中考数学复习资料提纲

5.初三具体的数学学习计划有哪些