电路实验报告(精品十一篇)

电路实验报告(精品十一篇)。

我们怎么样才能写好一篇报告?在平时的学习和工作中,报告是一定会接触的。报告是向上机关汇报工作、反映情况、答复上机关询问的陈述性文件,探索“电路实验报告”的内涵让我们了解更多有趣的事情,请把我的建议当作一个参考而非绝对的答案!

电路实验报告(篇1)

一、实验目的

巩固和掌握汽车全车线路组成及工作原理等有关内容。

2. 巩固和加强课堂所学知识,培养实践技能和动手能力,提高分析问题和解决问题的能力和技术创新能力。

二、实验设备

全车线路试验台4台

三、实验设备组成

全车电线束,仪表盘,各种开关、前后灯光分电路、点火线圈、发动机电脑、传感器、继电器、中央线路板、节气组件、电源、收放机、保险等。

四、组成原理

汽车总线路的组成:汽车电器与电子设备总线路,包括电源系统、起动系统、点火系统、照明和信号装置、仪表和显示装置、辅助电器设备等电器设备,以及电子燃油喷射系统、防抱死制动系统、安全气囊系统等电子控制系统。随着汽车技术的发展,汽车电器设备和电子控制系统的应用日益增多。

五、实验方法与步骤

直流、低压和并联等基本特点。

(1) 汽车电路通常采用单线制和负搭铁,汽车电路的单线制.通常是指汽车电器设备的正极用导线连接(又称为火线),负极与车架或车身金属部分连接,与车架或车身连接的导线又称为搭铁线。蓄电池负

极搭铁的汽车电路,称为负搭铁。现代汽车普遍采用负搭铁。同一汽车的所有电器搭铁极性是一致的。

对于某些电器设备,为了保证其工作的可靠性,提高灵敏度,仍然采用双线制连接方式。例如,发电机与调节器之间的搭铁线、双线电喇叭、电子控制系统的电控单元、传感器等。

(2) 汽车电路采用直流电源,汽车用电设备采用与电源电压一致的直流电器设备。

(输出信号等。

(4) 汽车电路采用并联连接电源设备和用电设备采用并联连接。电源设备中的蓄电池和发电机并联,可单独或同时向汽车电器与电子设备供电;各用电设备并联,可单独或同时工作。

(防抱死制动系统、安全气囊系统等电子控制系统,按照其工作原理相对独立运行。

2、导线颜色和编号特征:

所有低压导线选用不同颜色的单色线或双色线,并在每根导线上编号。

3、电子控控制系统特征:

P-73-

六、注意事项

实验前要做好充分准备,实验才能有条不紊的进行操作、观察和测量拟订的各量,以达预期的效果。实验应集中思想、细心操作、注意安全,否则难以达到预期效果,甚至损坏仪器设备或造成人身事故。

要求、设备性能、实验原理和实验步骤。

2.实验按预定的步骤进行,做好后经教师的检查允后方可启动或通电实验。

3.实验做完后,应自行检查数据等结果,并与理论相对照,分析实验结果,做好实验报告。

4.实验做完后,工具不要乱放,擦干净后,整理好装入工具箱内。

5.实验时发生事故,切勿惊慌失措,首先切断电源,保持现场,由教师检查处理。

6.要爱护财产,正确使用实验设备,如有损坏要添表上报,并听候处理,特别是操作不当或使用不当者,要部分或全部赔偿。

仪表等。

8.每次做完实验后,各组轮流打扫实验室,以保持清洁。

七、思考题

1、简述汽车电路图有哪些种类。

电路实验报告(篇2)

微波固态电路实验报告优秀范文

一、课程性质和目标

授课对象:本科三年级学生

课程类别:专业核心课、专业课

教学目标:使学生了解各种常用微波半导体器件的种类、工作机理、主要特点和功能,初步掌握微波固态电路的类型、工作原理、应用领域和设计的原则,并对微波电路有初步了解。让电磁场与无线技术、电波传播与天线、电子信息工程、信息对抗技术等专业学生能掌握微波电路的基础知识,为从事电磁场与微波技术应用工作打下基础。

二、课程内容安排和要求

(一)教学内容、要求及教学方法(

第一章:引言(

简单介绍微波的频段划分,微波电路的发展及其应用,要求学生了解该章内容,从发展的眼光看待微波电路,增强学习的目的性。

第二章:微波集成电路基础(

介绍微波平面集成传输线的种类和基本特性;微波单片集成电路最基本的知识,要求学生了解该部分内容。理解微带电路的不连续性,掌握常用的微带元件、阻抗变换电路及功率分配器和耦合器。

第三章:微波晶体管放大器(

了解微波三极管(包括双极晶体管、场效应晶体管、高电子迁移率晶体管和异质结双极晶体管)的基本工作机理,要求理解固态器件的等效电路模型与参数,以及其主要性能指标和适用范围。本章主要讲授小信号晶体管放大器、晶体管功率放大器及晶体管振荡器电路的工作原理、适用范围、器件选择、主要性能技术指标,重点讨论电路分析设计与综合,以及优化设计思想,该部分内容要求学生完全掌握。在讲授过程中以线性分析为主,简单介绍非线性电路的分析和设计原理。

第四章:微波混频器和检波器(

了解微波肖特基势垒二极管和检波二极管的工作原理及主要性能指标。主要讲授微波混频器与检波器的.工作原理,要求学生能理解该部分内容。要求学生掌握微波混频器与检波器的基本电路形式,主要性能技术指标,重点掌握电路设计分析与综合,以及优化设计思想。在讲授过程中以线性分析为主,简单介绍非线性电路的分析和设计原理。

第五章:微波倍频器(

了解变容二极管和阶跃恢复二极管的工作原理及主要性能指标。要求学生能理解倍频器基本理论。掌握变容二极管倍频器、阶跃恢复二极管倍频器、肖特基势垒二极管倍频器和晶体管倍频器的工作原理、电路形式和主要性能技术指标,重点掌握电路设计分析与综合,以及优化设计思想。

第六章:微波振荡器(

了解振荡晶体管工作原理及其等效电路模型与参数。要求学生能理解负阻振荡器、晶体管振荡器的一般理论,掌握负阻振荡器、晶体管振荡器的电路形式,主要性能技术指标,重点掌握电路分析与综合以及优化设计思想。了解体效应管、雪崩二极管及其振荡器的基本特性。

第七章:微波控制电路(

了解PIN二极管等效电路模型与参数及其主要性能指标和适用范围。要求学生能理解微波开关与电压控制移相器的工作原理,电路形式,掌握微波开关与电压控制移相器的主要技术指标,重点掌握分析和设计原理。

(二)自学内容和要求

学生在上本课程前需自学微带电路相关知识,包括微带电路设计与制作、微带滤波器工作原理。

(三)实践性教学环节和要求

试验一(

试验名称:放大器测试

试验目的:熟悉放大器的工作原理;掌握用网络分析仪测量放大器的参数,包括:功率平坦度、增益、输入/输出阻抗、驻波比及反向隔离度。

试验二(

试验名称:混频器测试

试验目的:熟悉混频器的工作原理;熟悉频谱分析仪的使用方法;掌握混频器的变频损耗测试方法。

试验三(

试验名称:微波压控振荡器的测试

试验目的:通过本实验让学生了解常用微波压控振荡器的基本工作原理,基本指标及其测试方法;熟悉对常用微波测试仪器——频谱分析仪的使用方法。

三、考核方式

本课程平时考核占总分的10%,以作业和出勤率综合考核,实验教学环节占总分的20%,期末考核以开卷笔试的方式考核,占总分的70%。

四、建议教材及参考资料

1.教材:《微波固态电路》,喻梦霞编,电子科技大学出版社2008年出版。

2.参考资料:《微波固态电路》,言华编,北京理工大学出版社1995年出版。

《微波有源电路》,赵国湘、高葆新编,国防工业出版社1990年出版。

《微波集成电路》,国防工业出版社1995年出版。

电路实验报告(篇3)

一、实验目的

1、学会互感电路同名端、互感系数以及耦合系数的测定方法。

2、理解两个线圈相对位置的改变,以及用不同材料作线圈铁芯时对互感的影响。

二、原理说明

1、判断互感线圈同名端的方法

(1)直流法

如图19-1所示,当开关S闭合瞬间,若毫安表的指针正确,则可断定“1”,“3”为同名端;指针反偏,则 “1”,“4”为同名端。

(2)交流法

如图19-2所示,将两个绕组N1和N2的任意两端(如2,4端)联在一起,在其中的一个绕组(如N1)两端加一个低电压,用交流电压分别测出端电压U13、U12和U34。若U13是两个绕组端压之差,则1,3是同名端;若U13是两个绕组端压之和,则1,4是同名端。

2、两线圈互感系数M的测定。

在图19-2的N1侧施加低压交流电压U1,测出I1及U2。根据互感电势E2M≈U20=MI;可算得互感系数为

M=U2I1

3、耦合系数K的测定

两个互感线圈耦合松紧的程度可用耦合系数K来表示

K=M/L1L2

先在N1侧加低压交流电压U1,测出N1侧开路时的电流I1;然后再在N2侧加电压U2,测出N1侧开路时的电流I2,求出各自的自感L1和L2,即可算得K值。

三、实验设备

1、直流电压、毫安表;

2、交流电压、电流表;

3、互感线圈、铁、铝棒;

4、EEL-06组件(或EEL-18);100Ω/3W电位器,510Ω/8W线绕电阻,发光二极管。

5、滑线变阻器;200Ω/2A(自备)

四、实验内容及步骤

1、分别用直流法和交流法测定互感线圈的同名端。

(1)直流法

实验线路如图19-3所示,将N1、N2同心式套在一起,并放入铁芯。U1为可调直流稳压电源,调至6V,然后改变可变电阻器R(由大到小地调节),使流过N1侧的电流不超过0.4A(选用5A量程的数字电流表),N2侧直接接入2mA量程的毫安表。将铁芯迅速地拔出和插入,观察毫安表正、负读数的变化,来判定N1和N2两个线圈的同名端。

(2)交流法

按图19-4接线,将小线圈N2套在线圈N2中。N1串联电流表(选0~5A的量程)后接至自耦调压器的输出,并在两线圈中插入铁芯。

接通电路源前,应首先检查自耦调压器是否调至零位,确认后方可接通交流电源,令自耦调压器输出一个很低的电压(约2V左右),使流过电流表的电流小于1.5A,然后用0~20V量程的交流电压表测量U13,U12,U34,判定同名端。

拆去2、4联线,并将2、3相接,重复上述步骤,判定同名端。

2、按原理说明2的步骤测出U1,I1,U2,计算出M。

3、将低压交流加在N2侧,N1开路,按步骤2测出U2,I1,U1。

4、用万用表的R×1档分别测出N1和N2线圈的电阻值R1和R2。

5、观察互感现象

在图19-4的N1侧接入LED发光二极管与510Ω串联的支路。

(1)将铁芯慢慢地从两线圈中抽出和插入,观察LED亮度的变化及各电表读数的变化,记录现角。

(2)改变两线圈的相对位置,观察LED亮度的变化及仪表读数。

(3)改用铝棒代替铁棒,重复(1),(2)的步骤,观察LED的亮度变化,记录现象。

五、实验注意事项

1、整个实验过程中,注意流过线圈N1的电流不超过1.5A,流过线圈N2的电流不得超过1A。

2、测定同名端及其他测量数据的实验中,都应将小线圈N2套在大线圈N1中,并行插入铁芯。

3、如实验室各有200Ω,2A的滑线变阻器或大功率的负载,则可接在交流实验时的N侧。

4、实验前,首先要检查自耦调压器,要保证手柄置在零位,因实验时所加的电压只有2~3V左右。因此调节时要特别仔细,小心,要随时观察电流表的读数,不得超过规定值。

电路实验报告(篇4)

一、实验目的

1. 更好的理解、巩固和掌握汽车全车线路组成及工作原理等有关内容。

2. 巩固和加强课堂所学知识,培养实践技能和动手能力,提高分析问题和解决问题的能力和技术创新能力。

二、实验设备

全车线路试验台4台

三、实验设备组成

全车电线束,仪表盘,各种开关、前后灯光分电路、点火线圈、发动机电脑、传感器、继电器、中央线路板、节气组件、电源、收放机、保险等。

四、组成原理

汽车总线路的组成:汽车电器与电子设备总线路,包括电源系统、起动系统、点火系统、照明和信号装置、仪表和显示装置、辅助电器设备等电器设备,以及电子燃油喷射系统、防抱死制动系统、安全气囊系统等电子控制系统。随着汽车技术的发展,汽车电器设备和电子控制系统的应用日益增多。

五、实验方法与步骤

1、 汽车线路的特点:汽车电路具有单线、直流、低压和并联等基本特点。

(1) 汽车电路通常采用单线制和负搭铁,汽车电路的单线制.通常是指汽车电器设备的正极用导线连接(又称为火线),负极与车架或车身金属部分连接,与车架或车身连接的导线又称为搭铁线。蓄电池负

极搭铁的汽车电路,称为负搭铁。现代汽车普遍采用负搭铁。同一汽车的所有电器搭铁极性是一致的。

对于某些电器设备,为了保证其工作的可靠性,提高灵敏度,仍然采用双线制连接方式。例如,发电机与调节器之间的搭铁线、双线电喇叭、电子控制系统的电控单元、传感器等。

(2) 汽车电路采用直流电源,汽车用电设备采用与电源电压一致的直流电器设备。

(3) 汽车用电都是低压电源一般为12V、24V,目前有的人提出用42V电源。个别电器工作信号是高压或不同的电压,如点火系统电路中的高压电路,电控系统各传感器的工作电压、输出信号等。

(4) 汽车电路采用并联连接电源设备和用电设备采用并联连接。电源设备中的蓄电池和发电机并联,可单独或同时向汽车电器与电子设备供电;各用电设备并联,可单独或同时工作。

(5) 各电子控制系统相对独立运行,发动机电子控制系统、防抱死制动系统、安全气囊系统等电子控制系统,按照其工作原理相对独立运行。

2、导线颜色和编号特征:

所有低压导线选用不同颜色的单色线或双色线,并在每根导线上编号。

3、电子控控制系统特征:

P-73-

六、注意事项

实验前要做好充分准备,实验才能有条不紊的进行操作、观察和测量拟订的各量,以达预期的效果。实验应集中思想、细心操作、注意安全,否则难以达到预期效果,甚至损坏仪器设备或造成人身事故。

1.实验前必须认真预习,作好充分的准备,以保证实验能有效而顺利的进行。预习要求搞清楚实验的目的、要求、设备性能、实验原理和实验步骤。

2.实验按预定的步骤进行,做好后经教师的检查允后方可启动或通电实验。

3.实验做完后,应自行检查数据等结果,并与理论相对照,分析实验结果,做好实验报告。

4.实验做完后,工具不要乱放,擦干净后,整理好装入工具箱内。

5.实验时发生事故,切勿惊慌失措,首先切断电源,保持现场,由教师检查处理。

6.要爱护财产,正确使用实验设备,如有损坏要添表上报,并听候处理,特别是操作不当或使用不当者,要部分或全部赔偿。

7.严禁动与本次实验无关的仪器、仪表等。

8.每次做完实验后,各组轮流打扫实验室,以保持清洁。

七、思考题

1、简述汽车电路图有哪些种类。

2、绘制汽车全车电气系统原理框图。

电路实验报告(篇5)

一、实验目的

互感系数以及耦合系数的测定方法。

2、理解两个线圈相对位置的改变,以及用不同材料作线圈铁芯时对互感的影响。

二、原理说明

1、判断互感线圈同名端的方法

(1)直流法

如图19-1所示,当开关S闭合瞬间,若毫安表的指针正确,则可断定“1”,“3”为同名端;指针反偏,则 “1”,“4”为同名端。

(2)交流法

如图联在一起,在其中的一个绕组(如NU12和U34。若U13是两个绕组端压之差,则1,3是同名端;若U13是两个绕组端压之和,则1,4是同名端。

2、两线圈互感系数M的测定。

在图19-2的N1侧施加低压交流电压U1,测出I1及U2。根据互感电势E2M≈U20=MI;可算得互感系数为

M=U2I1

3、耦合系数K的测定

两个互感线圈耦合松紧的程度可用耦合系数K来表示

K=M/L1L2

先在N1侧加低压交流电压U1,测出N1侧开路时的电流I1;然后再在N2侧加电压U2,测出N1侧开路时的电流I2,求出各自的自感L1和L2,即可算得K值。

三、实验设备

毫安表;

电流表;

铁、铝棒;

;100Ω/3W电位器,510Ω/8W线绕电阻,发光二极管。

四、实验内容及步骤

1、分别用直流法和交流法测定互感线圈的同名端。

(1)直流法

实验线路如图,使流过N,N负读数的变化,来判定N1和N2两个线圈的同名端。

(2)交流法

按图后接至自耦调压器的输出,并在两线圈中插入铁芯。

接通电路源前,应首先检查自耦调压器是否调至零位,确认后方可接通交流电源,令自耦调压器输出一个很低的电压(约,使流过电流表的电流小于1.5A,然后用0~20V量程的交流电压表测量U13,U12,U34,判定同名端。

拆去3相接,重复上述步骤,判定同名端。

2、按原理说明2的步骤测出U1,I1,U2,计算出M。

3、将低压交流加在N2侧,N1开路,按步骤2测出U2,I1,U1。

4、用万用表的R×1档分别测出N1和N2线圈的电阻值R1和R2。

5、观察互感现象

在图19-4的N1侧接入LED发光二极管与510Ω串联的支路。

(1)将铁芯慢慢地从两线圈中抽出和插入,观察LED亮度的变化及各电表读数的变化,记录现角。

(2)改变两线圈的相对位置,观察LED亮度的'变化及仪表读数。

(3)改用铝棒代替铁棒,重复(1),(2)的步骤,观察LED的亮度变化,记录现象。

五、实验注意事项

1、整个实验过程中,注意流过线圈N1的电流不超过1.5A,流过线圈N2的电流不得超过1A。

2、测定同名端及其他测量数据的实验中,都应将小线圈N2套在大线圈N1中,并行插入铁芯。

3、如实验室各有200Ω,2A的滑线变阻器或大功率的负载,则可接在交流实验时的N侧。

4、实验前,首先要检查自耦调压器,要保证手柄置在零位,因实验时所加的电压只有2~3V左右。因此调节时要特别仔细,小心,要随时观察电流表的读数,不得超过规定值。

电路实验报告(篇6)

一、实验仪器及材料

1、信号发生器

2、示波器

二、实验电路

三、实验内容及结果分析

1、VCC=12v,VM=6V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输

2、VCC=9V,VM=4、5V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输

3、VCC=6V,VM=3V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输出波形最大且不失真。(以下输入输出值均为有效值)

四、实验小结

功率放大电路特点:在电源电压确定的情况下,以输出尽可能大的不失真的信号功率和具有尽可能高的转换效率为组成原则,功放管常工作在尽限应用状态。

电路实验报告(篇7)

一、试验题目

利用类实现阶梯型电阻电路计算

二、试验目的

利用类改造试验三种构造的计算程序,实现类的封装。通过这种改造理解类实现数据和功能封装的作用,把握类的设计与编程。

三、试验原理

程序要求用户输入的电势差和电阻总数,并且验证数据的有效性:电势差必需大于0,电阻总数必需大于0小于等于100的偶数。再要求用户输入每个电阻的电阻值,并且验证电阻值的有效性:必需大于零。此功能是由类CLadderNetwork的InputParameter ()函数实现的。

且该函数对输入的数据进展临界推断,若所输入数据不满意要求,要重新输入,直到满意要求为止。

本试验构造了两个类,一个CResistance类,封装了电阻的属性和操作,和一个CLadderNetwork类,封装了阶梯型电阻电路的'属性和操作。

用户输入的电势差、电阻总数、电阻值,并赋给CladderNetwork的数据,此功能是由类CLadderNetwork的InputParameter 函数实现的。

输出用户输入的电势差、电阻总数、电阻值,以便检查,此功能是由类CLadderNetwork的PrintEveryPart()函数实现的。

依据用户输入的电势差、电阻总数、电阻值换算出每个电阻上的电压和电流。此功能是由类CLadderNetwork的Calculate ()函数实现的。

最终输出每个电阻上的电压和电流,此功能是由类CLadderNetwork的PrintResult()函数实现的。

此程序很好的表达了面对对象编程的技术:

封装性:类的方法和属性都集成在了对象当中。

继承性:可以继承使用已经封装好的类,也可以直接引用。

多态性:本试验未使用到多态性。

安全性:对重要数据不能直接操作,保证数据的安全性。

以下是各个类的说明:

class CResistance //电阻类 private:

double voltage;

double resistance;

double current; public:

void InitParameter(); //初始化数据

void SetResist(double r); //设置resistance的值

void SetCur(double cur); //设置current的值

void SetVol(double vol); //设置voltage的值

void CalculateCurrent(); //由电阻的电压和电阻求电流

double GetResist(){return resistance;} //获得resistance的值 保证数据的安全性

double GetCur(){return current;} //获得current的值

double GetVol(){return voltage;} //获得voltage的值

class CResistance //电阻类{ private:

CResistance resists[MAX_NUM]; //电阻数组 int num;

double srcPotential; public:

void InitParameter(); //初始化数据

void InputParameter(); //输入数据

void Calculate(); //计算

void PrintEveryPart(); //显示输入的数据以便检查

void PrintResult(); //显示结果

四、试验结果

程序开头界面:

错误输入 -1(不能小于0)

错误输入0 (不能为0)

输入正确数据3

输入错误数据-1

输入错误数据0

输入正确数据4

同样给电阻输入数据也必需是正数 现在一次输入 2,2,1,1

得到正确结果。

电路实验报告(篇8)

试验目的

1、了解日光灯电路的工作原理及提高功率因素的方法;

2、通过测量日光灯所消耗的功率,学会瓦特表;

3、学会日光灯的连线方法。

试验仪器

8W日光灯装置(灯管、镇流器、启辉器)一套,功率表,万用表,可调电容箱,开关,导线若干

试验原理

用P、S、I、V分别表示电路的有功功率、视在功率、总电流和电源电压。按定义电路的功率因数cosα=P/S=P/IU。由此可见,在电源电压且电路的有功功率肯定时,电路的功率因数越高,它占用电源(或供电设备)的容量S就越少。

日光灯电路中,镇流器是一个感性元件(相当于电感与电阻的'”串联),因此它是一个感性电路,切功率因数很低,约0.5-0.6。

提高日光灯电路(其它感性电路也是一样)功率因素的方法是在电路的输入端并联肯定容量的电容器。

测试电路图

试验数据表

结论

在肯定范围内,随着电容的增大,功率因数也增大,当超过肯定范围,功率因数随着电容的增大而削减。

电路实验报告(篇9)

一、实验目的

本次实验旨在通过搭建不同类型的电路,验证电路中电流、电压、电阻等参数的关系,并进一步理解并应用欧姆定律和基尔霍夫定律。

二、实验器材和材料

本实验所用的器材和材料包括:电源、电阻箱、导线、电流表、电压表、开关、灯泡等。

三、实验内容和步骤

1. 我们搭建了一个简单的串联电路。将一个5V的电源连接到一个10欧姆的电阻上,然后将电阻的两端连接到一个灯泡上,并通过开关控制电路的通断。

2. 打开电源,记录下电路中的电流和电压值。再通过改变电阻的大小,观察电流和电压的变化。当我们打开或关闭开关时,灯泡是否亮起或熄灭也需要进行观察记录。

3. 我们搭建了一个并联电路。将电源连接到两个不同电阻的串联上,并将这两个电阻的另一端分别连接到一个灯泡上。

4. 打开电源,同样记录并分析电流和电压值。我们通过改变电阻的大小,观察电流和电压的变化,并观察灯泡的明暗情况。

5. 我们搭建了一个复杂的混合电路。将电源连接到一个并联电路和一个串联电路上。并通过改变电阻的大小、开关的通断来观察整个电路的变化和效果。

四、实验结果和分析

1. 根据实验记录,我们可以得到串联电路中的电压等于电源电压的总和,而电流相同,符合基尔霍夫定律。

2. 同样地,对于并联电路,电流等于电源电流的总和,而电压相同,也符合基尔霍夫定律。

3. 在复杂的混合电路中,通过多次改变电阻的值和开关的状态,我们观察到电流和电压的变化是符合欧姆定律的。当电阻增加时,电流减小;而当电阻减小时,电流增加。

五、实验

通过本次实验,我们深入了解并应用了欧姆定律和基尔霍夫定律。我们通过实验搭建了不同类型的电路,验证了电路中电流、电压、电阻等参数之间的关系。同时,我们也进一步掌握了如何使用电流表、电压表等仪器来测量电路中的参数。实验结果表明,我们所学的理论知识是正确的,电流和电压的变化规律是可以通过实验进行验证的。

六、实验心得

通过本次实验,我对电路的搭建和电流、电压等参数的测量有了更深入的理解。实验过程中,我学会了如何正确地搭建电路,并合理使用仪器进行测量。我也发现实验中的一些细节非常重要,比如好的电线连接、灯泡的正确选取等,这些因素都会对实验结果产生影响。在今后的实验中,我会更加注重这些细节,并更加认真地进行实验,以获得更准确的实验结果。

七、参考文献

1. 《电路实验教程》

2. 《电路学基础》

本次电路实验通过搭建不同类型的电路,并通过测量电流、电压等参数的值,验证了欧姆定律和基尔霍夫定律的正确性。实验结果表明,电路中电流和电压之间存在一定的关系,这些关系可以通过实验进行验证。在今后的学习和实验中,我们将继续深入理解电路相关的知识,并通过实验来巩固和应用所学的理论。

电路实验报告(篇10)

一、试验目的

1、学会互感电路同名端、互感系数以及耦合系数的测定方法。

2、理解两个线圈相对位置的转变,以及用不同材料作线圈铁芯时对互感的影响。

二、原理说明

1、推断互感线圈同名端的方法

(1)直流法

如图19-1所示,当开关S闭合瞬间,若毫安表的指针正确,则可断定“1”,“3”为同名端;指针反偏,则“1”,“4”为同名端。

(2)沟通法

如图19-2所示,将两个绕组N1和N2的任意两端(如2,4端)联在一起,在其中的一个绕组(如N1)两端加一个低电压,用沟通电压分别测出端电压U13、U12和U34。若U13是两个绕组端压之差,则1,3是同名端;若U13是两个绕组端压之和,则1,4是同名端。

2、两线圈互感系数M的测定。

在图19-2的N1侧施加低压沟通电压U1,测出I1及U2。依据互感电势E2M≈U20=MI;可算得互感系数为 M=U2I1

3、耦合系数K的测定

两个互感线圈耦合松紧的程度可用耦合系数K来表示 K=M/L1L2

先在N1侧加低压沟通电压U1,测出N1侧开路时的电流I1;然后再在N2侧加电压U2,测出N1侧开路时的电流I2,求出各自的自感L1和L2,即可算得K值。

三、试验设备

1、直流电压、毫安表;

2、沟通电压、电流表;

3、互感线圈、铁、铝棒;

4、EEL-06组件(或EEL-18);100Ω/3W电位器,510Ω/8W线绕电阻,发光二极管。

5、滑线变阻器;200Ω/2A(自备)

四、试验内容及步骤

1、分别用直流法和沟通法测定互感线圈的同名端。

(1)直流法

试验线路如图19-3所示,将N1、N2同心式套在一起,并放入铁芯。U1为可调直流稳压电源,调至6V,然后转变可变电阻器R(由大到小地调整),使流过N1侧的电流不超过0.4A(选用5A量程的数字电流表),N2侧直接接入2mA量程的毫安表。将铁芯快速地拔出和插入,观看毫安表正、负读数的变化,来判定N1和N2两个线圈的同名端。

(2)沟通法

按图19-4接线,将小线圈N2套在线圈N2中。N1串联电流表(选0~5A的量程)后接至自耦调压器的输出,并在两线圈中插入铁芯。

接通电路源前,应首先检查自耦调压器是否调至零位,确认前方可接通沟通电源,令自耦调压器输出一个很低的电压(约2V左右),使流过电流表的电流小于1.5A,然后用0~20V量程的沟通电压表测量U13,U12,U34,判定同名端。

拆去2、4联线,并将2、3相接,重复上述步骤,判定同名端。

2、按原理说明2的步骤测出U1,I1,U2,计算出M。

3、将低压沟通加在N2侧,N1开路,按步骤2测出U2,I1,U1。

4、用万用表的R×1档分别测出N1和N2线圈的电阻值R1和R2。

5、观看互感现象

在图19-4的N1侧接入LED发光二极管与510Ω串联的.支路。

(1)将铁芯渐渐地从两线圈中抽出和插入,观看LED亮度的变化及各电表读数的变化,记录现角。

(2)转变两线圈的相对位置,观看LED亮度的变化及仪表读数。

(3)改用铝棒代替铁棒,重复(1),(2)的步骤,观看LED的亮度变化,记录现象。

五、试验留意事项

1、整个试验过程中,留意流过线圈N1的电流不超过1.5A,流过线圈N2的电流不得超过1A。

2、测定同名端及其他测量数据的试验中,都应将小线圈N2套在大线圈N1中,并行插入铁芯。

3、照实验室各有200Ω,2A的滑线变阻器或大功率的负载,则可接在沟通试验时的N侧。

4、试验前,首先要检查自耦调压器,要保证手柄置在零位,因试验时所加的电压只有2~3V左右。因此调整时要特殊认真,当心,要随时观看电流表的读数,不得超过规定值。

电路实验报告(篇11)

一:实验要求

(1)设计一个正弦信号发生器,要求ROM是8位数据线,8位地址。256个8位波形数据的mif文件通过两种方式建立,一种用Quartus II的专用编辑器建立,另一种是使用附录的mif文件生成器建立。首先创建原理图工程,调用LPM_ROM等模块;在原理图编辑窗中绘制电路图,全程编译,对设计进行时序仿真,根据仿真波形说明此电路的功能,引脚锁定编译,编程下载于

FPGA中,用实验系统上的DAC0832做波形输出,用示波器来观察波形。完成实验报告。

(2)学习使用Quartus II的In-System Memory Content Editor来观察FPGA中的LPM_ROM中的z形波数据,并在在线改变数据后,从示波器上观察对应的输出波形的改变情况。

(3)学习使用Quartus II的Signal Tap II观察FPGA的正弦波形。

二:实验原理

正弦信号发生器的结构框图由四个部分组成:

(1)计数器或地址发生器,用来作为正弦波数据ROM的地址信号发生器。ROM中的数据将随地址数据的递增而输出波形数据,然后由DAC输出波形。

(2)正弦信号数据ROM,含64个8位数据。

(3)原理图顶层设计。

(4)8位D/A。DAC的输出接示波器。

三:实验内容

1、定制初始化波形数据文件:建立.mif格式文件。File—new—other files,选择 Memory Initialization File选项,选择64点8位的正弦数据,弹出表格后输入教材图4-38中的数据。然后以romd.mif的名字保存至新建的文件夹中。

2、定制LPM_ROM元件:利用MegaWizard Plug-In Manager定制正弦信号数据ROM宏功能块,并将以上的波形数据加载于此ROM中。并以

data_rom.vhd名字将生成的用于例化的波形数据ROM文件保存至上述文件夹中。