百分数知识点总结

百分数知识点总结。

天波易谢,寸暑难留。回想起来,我们或多或少会在某些时候有些深刻的故事,在事情过后,我们或主动或被动的写一篇总结,总结的精髓在于客观的查错改错。怎么样去写好总结范文呢?小编特地为你收集整理“百分数知识点总结”,在此提醒你收藏本页,以方便阅读!

百分数在数学中是经常会用到的知识,那么我们应该掌握的百分数知识点又有什么呢?下面百分数知识点总结是小编想跟大家分享的,欢迎大家浏览。

百分数知识点总结

1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数,百分数也叫做百分率或百分比。

百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。

例如:25%的意义:表示一个数是另一个数的25%。

2.百分数通常不写成分数形式,而在原来分子后面加上%来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

3.小数与百分数互化的规则:

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;(加向右)

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。(去向左)

4.百分数与分数互化的规则:

把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

5、常用的分数、小数及百分数的互化

6.百分率公式:求百分率就是求一个数是另一个数的百分之几。(算式要加100%,包括浓度、利润率)

百分数的意义

如果要真正地理解百分数的意义和正确地使用它是存在着许多的问题。虽然大多数人都知道百分数,但是在平时生活中却似乎不常使用分数,实际上只要细心就会发现,其实生活中处处存在着百分数的例子比如超市的折扣就是百分数的应用。初中教育的测试中,虽然不是直接地对百分数的意义进行考察,但是,运用各种题型,掌握各种类型的百分数的题目,并且能真正地运用它,是非常重要的。下面进行简单的描述。

百分数的意义是能在生产生活中能将事物占总体的比例形容的更加完整,让省去许多不必要的言语,简易而恰当。下面有几种情况值得了解。

举例来说:(一),百分数虽然是以100为分母,但是分子的数也可以大于100的。这是很多人不了解的,以为分子大于100是不可能的,但是却是确确实实存在的。如200%表示的是原本数字的2倍关系。举例子来说:一个书店上半年的存利润是10万元,而下半年的存利润是12万元,那么则可以表示成上半年存利润比下半年的存利润增加20%即120%。(二)百分数有时也会造成误会,这就要我们认真地去区分。例如:不少人认为一个百分比的上升会被相同下降的百分比所消。举一个例子来说: 10增加50%,就等于10+5=15,,而如果从15下降50%则为15-7.5=7.5.最终的结果是小于10.这样的误区是因为不了解百分数的意义。

总的来说,掌握了百分数的意义是什么对做题和生活算数都有帮助,对于一些概念的掌握不是单纯的死记硬背,而要真正地了解它。那么怎样才能真的了解它?就只有细心的去分析百分数的具体应用,多做这方面的练习,从而更多的了解百分数在生活中的具体应用,然后熟练描述生活中涉及百分数的事件,这样才能变得不再是百分数的未知者,从而对百分数的意义了解的更加透彻。

Gz85.Com更多总结小编推荐

指数对数幂函数知识点总结


篇一:指数、对数、幂函数知识点

指数、对数、幂函数知识归纳

知识要点梳理

知识点一:指数及指数幂的运算 1.根式的概念

的次方根的定义:一般地,如果

当为奇数时,正数的次方根为正数,负数的次方根是负数,

表示为当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.

负数没有偶次方根,0的任何次方根都是0.式子

叫做根式,叫做根指数,叫做被开方数.

,那么叫做的

次方根,其中

2.n次方根的性质: (1)当为奇数时,

(2)当为偶数时,

3.分数指数幂的意义:

注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:

(1)(2)(3)

知点二:指数函数及其性质 1.指数函数概念:一般地,函数变量,函数的定义域为

.

叫做指数函数,其中是自

1.(2013·北京高考理科·T5)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)= ( )

A.ex+1 B.ex-1C.e-x+1 D.e-x-1

2.(2013·上海高考文科·T8)方程

3.(2013·湖南高考理科·T16)设函数

f(x)?ax?bx?cx,其中c?a?0,c?b?0.

9x

的实数解为 . ?1?3x

3?1

且a=b?,(1)记集合M??(a,b,c)a,b,c不能构成一个三角形的三条边长,

则(a,b,c)?M所对应的f(x)的零点的取值集合为____.

(2)若a,b,c是?ABC的三条边长,则下列结论正确的是. (写出所有正确结论的序号)

①?x????,1?,f?x??0;

②?x?R,使得ax,bx,cx不能构成一个三角形的三边长; ③若?ABC为钝角三角形,则?x??1,2?,使f?x??0.

知识点三:对数与对数运算 1.对数的定义(1)若叫做底数,

叫做真数.

,则叫做以为底

的对数,记作

(2)负数和零没有对数.

(3)对数式与指数式的互化:2.几个重要的对数恒等式:

.

.

3.常用对数与自然对数:

常用对数:

,即

;自然对数:

,即

(其中

…).

4.对数的运算性质如果

①加法:

,那么

②减法:③数乘:④

⑥换底公式:

知识点四:对数函数及其性质 1.对数函数定义

一般地,函数数的定义域

.

叫做对数函数,其中是自变量,函

2.对数函数性质:

4.(2013·广东高考理科·T2)函数f(x)?

的定义域是( ) x?1

A.(?1,??) B.[?1,??) C.(?1,1)(1,??) D.[?1,1)(1,??)

5.(2013·陕西高考文科·T3)设a, b, c均为不等于1的正实数, 则下列等式中恒成立的是 ( ) A.

logab·logcb?logca

B. logab?logca?logcb

篇二:指数_对数_幂函数必备知识点

几种特殊的函数

知识点一:指数及指数幂的运算

1.根式的概念

的次方根的定义:一般地,如果,那么叫做的次方根,其中

当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.

负数没有偶次方根,0的任何次方根都是0.

式子叫做根式,叫做根指数,叫做被开方数.

2.n次方根的性质:

(1)当为奇数时,;当为偶数时,

(2)

3.分数指数幂的意义:

注意:0的正分数指数幂等于0,负分数指数幂没有意义.

4.有理数指数幂的运算性质:

(1) (2) (3)

知识点二:指数函数及其性质

1.指数函数概念

一般地,函数叫做指数函数,其中是自变量,函数的定义域为.

2.指数函数函数性质:

函数

名称

指数函数

定义

函数且叫做指数函数

图象

定义域

值域

过定点

图象过定点,即当时,.

奇偶性

非奇非偶

单调性

在上是增函数

在上是减函数

函数值的

变化情况

变化对图象的影响

在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.

知识点三:对数与对数运算

1.对数的定义

(1)若,则叫做以为底的对数,记作,其中叫做底数,

叫做真数.

(2)负数和零没有对数.

(3)对数式与指数式的互化:.

2.几个重要的对数恒等式

,,.

3.常用对数与自然对数

常用对数:,即;自然对数:,即(其中…).

4.对数的运算性质

如果,那么

①加法:

②减法:

③数乘:

⑥换底公式:

知识点四:对数函数及其性质

1.对数函数定义

一般地,函数叫做对数函数,其中是自变量,函数的定义域.

2.对数函数性质:

函数

名称

对数函数

定义

函数且叫做对数函数

图象

定义域

值域

过定点

图象过定点,即当时,.

奇偶性

非奇非偶

单调性

在上是增函数

在上是减函数

函数值的

变化情况

变化对图象的影响

在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.

知识点五:反函数

1.反函数的概念

设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.

2.反函数的性质

(1)原函数与反函数的图象关于直线对称.

(2)函数的定义域、值域分别是其反函数的值域、定义域.

(3)若在原函数的图象上,则在反函数的图象上.

(4)一般地,函数要有反函数则它必须为单调函数.

3.反函数的求法

(1)确定反函数的定义域,即原函数的值域;

(2)从原函数式中反解出;

(3)将改写成,并注明反函数的定义域.

知识点六:幂函数

1.幂函数概念

形如的函数,叫做幂函数,其中为常数.

2.幂函数的性质

(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布

在第一、二象限(图象关于轴对称);是奇函数时,图象分

布在第一、三象限(图象关于原点对称);是非奇非偶函数

时,图象只分布在第一象限.

(2)过定点:所有的幂函数在都有定义,并且图象都通过

点.

(3)单调性:如果,则幂函数的图象过原点,并且在

上为增函数.如果,则幂函数的图象在

上为减函数,在第一象限内,图象无限接近轴与轴.

(4)奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,

幂函数为偶函数.当(其中互质,和),

若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,

若为偶数为奇数时,则是非奇非偶函数.

(5)图象特征:幂函数,当时,若,其图象在直线下方,若

,其图象在直线上方,当时,若,其图象在直线上方,若,

其图象在直线下方.

篇三:指数对数幂函数知识点汇总

知识点一:根式、指数幂的运算

1、根式的概念:若x?a,则x叫做a的次方根, n?1,n?N

n

?

?

?

(1)当n为奇数时,正数的n次方根为正,负数的n次方根为负,记作na; (2)当n为偶数时,正数的n

次方根有两个(互为相反数),记作 (3)负数没有偶次方根,0的任何次方根都是0. 2、n次方根的性质:(1

n

?an为奇数

. ?a; (2

??

?|a|n为偶数

3、分数指数幂的意义:(1

)a?; (2

)a

mn

m?n

?

1a

mn

?

a?0,m,n?N

?

,n?1?.

注意:0的正指数幂等于0,负指数幂没有意义. 4、指数幂的运算性质:?a?0,b?0,r,s?R?

rrs

)ras?a? (1a;(2)a

??

s

?ars; (3)?ab??arbr

r

知识点二:对数与对数运算

b

1、指数式与对数式的互化:a?N?logaN?b(a?0,a?1,N?0)

2、几个重要的对数恒等式

(1)负数和0没有对数; (2)loga1?0(a?1) (3)logaa?1(a?a); (4)对数恒等式:a3、对数的运算性质

(1)loga(MN)?logaM?logaN; (2)loga

n

1

logaN

?N

M

?logaM-logaN; N

logmN

logma

(3)logaM?nlogaM(n?R); (4)换底公式:logaN?

(5)logab?logba?1 ; (6)logab?logbc?logac ; (7)logab?logbc?logcd?logad ; (8)logambn?n

logab;

m

知识点四:对数函数及其性质

x

注:指数函数y?a与对数函数y?logax互为反函数 (1)互为反函数的两函数图象关于y?x对称,

即(a,b)在原函数图象上,则(b,a)在其反函数图象上; (2)互为反函数的两函数在各自的定义域上单调性相同。 知识点五:复合函数的单调性

1、增函数+增函数=增函数;减函数+减函数=减函数;

2、若g(x)?kf(x), 则k?0时,g(x)与f(x)单调性相同;k?0时,g(x)与f(x) 单调性相反; 3

、若g(x)?4、若g(x)?a

g(x)与f(x)单调性相同(注意f(x)?0);

f(x)

,则a?1时,g(x)与f(x)单调性相同;0?a?1时,g(x)与f(x)

单调性相反;

5、若g(x)?logaf(x), 则a?1时,g(x)与f(x)单调性相同; 0?a?1时,g(x)与f(x)单调性相反;(注意f(x)?0)知识点六: 幂函数及性质

?

幂函数y?x的性质:(第一象限内)

(1)所有的幂函数在(0,??)都有定义,都过点(1,1); (2)??0时,在[0,??)上递增,且又都过(0,0);

??0时,且在(0,??)上递减;

(3)0???1时,图象上凸;??1时,图象下凹; (4)在直线x?1的右侧,指数越大,图象越高。


数学参数方程知识点总结


参数方程和函数很相似,它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。下面数学参数方程知识点总结是小编为大家整理的,在这里跟大家分享一下。

数学参数方程知识点总结

参数方程定义

一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t)

并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。

参数方程

圆的参数方程x=a+rcosy=b+rsin(a,b)为圆心坐标r为圆半径为参数

椭圆的参数方程x=acosy=bsina为长半轴长b为短半轴长为参数

双曲线的参数方程x=asec(正割)y=btana为实半轴长b为虚半轴长为参数

抛物线的参数方程x=2pt2y=2ptp表示焦点到准线的距离t为参数

直线的参数方程 x=x+tcosa y=y+tsina,x,y和a表示直线经过(x,y),且倾斜角为a,t为参数

参数方程的应用

一般在平面直角坐标系中,如果曲线上任意一点的坐标x, y都是某个变数t的函数:x=f(t),y=g(t), 并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x, y的变数t叫做参变数,简称参数。

圆的参数方程 x=a+r cos y=b+r sin (a,b)为圆心坐标 r为圆半径 为参数

椭圆的参数方程 x=a cos y=b sin a为长半轴 长 b为短半轴长 为参数

双曲线的参数方程 x=a sec (正割) y=b tan a为实半轴长 b为虚半轴长 为参数

抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数

直线的参数方程 x=x+tcosa y=y+tsina , x, y和a表示直线经过(x,y),且倾斜角为a,t为参数.

高中数学数列知识点总结


高中数学数列知识点总结:等差数列公式

等差数列的通项公式为:an=a1 (n-1)d

或an=am (n-m)d

前n项和公式为:sn=na1 [n(n-1)/2] d或sn=(a1 an)n/2

若m n=2p则:am an=2ap

以上n均为正整数

文字翻译

第n项的值=首项 (项数-1)*公差

前n项的和=(首项 末项)*项数/2

公差=后项-前项

高中数学数列知识点总结:等比数列公式

等比数列求和公式

(1) 等比数列:a (n 1)/an=q (n∈n)。

(2) 通项公式:an=a1譹^(n-1); 推广式:an=am譹^(n-m);

(3) 求和公式:sn=n譨1 (q=1) sn=a1(1-q^n)/(1-q) =(a1-an譹)/(1-q) (q≠1) (q为公比,n为项数)

(4)性质:

①若 m、n、p、q∈n,且m n=p q,则am譨n=ap譨q;

②在等比数列中,依次每 k项之和仍成等比数列.

③若m、n、q∈n,且m n=2q,则am譨n=aq^2

(5)"g是a、b的等比中项""g^2=ab(g ≠ 0)".

(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。

等比数列求和公式推导: sn=a1 a2 a3 ... an(公比为q) q*sn=a1*q a2*q a3*q ... an*q =a2 a3 a4 ... a(n 1) sn-q*sn=a1-a(n 1) (1-q)sn=a1-a1*q^n sn=(a1-a1*q^n)/(1-q) sn=(a1-an*q)/(1-q) sn=a1(1-q^n)/(1-q) sn=k*(1-q^n)~y=k*(1-a^x)。