比例的课件锦集

比例的课件锦集。

资料可以指生产、生活中必需的东西。如:生产资料;生活资料。在我们的现实生活工作中,时常会需要资料作为参考。资料对我们的学习和工作有着不可估量的作用。所以,你有哪些值得推荐的资料内容呢?经过搜索和整理,小编为大家呈上比例的课件锦集,供有需要的朋友参考借鉴,希望可以帮助到你。

比例的课件 篇1

教学内容:

西师版实验教材六年级上54页例1。

教学目标:

1、理解并掌握按比例分配的意义,能运用按比例分配的方法解决实际问题。

2、逐步培养用数学知识解决实际问题的能力。

教学重点:

按比例分配的应用题。

教学过程:

1、创设情境,导入新课。

1、有一次,熊大和熊二来到水果店,它们各出了10元,买回8个苹果,它们商量着平分这八个苹果。熊大和熊二可高兴了。

师:孩子们想想它们这样分合理吗?为什么?

生:它们给的钱一样多。

师:看来分苹果时关注的是它们出的钱。谁能告诉我,它们给出的钱的比是。

生:它们给出的钱的比是1:1。

师:那它们分得苹果的比也是

师:证明它们分得苹果个数的比与它们出的钱的比是(一样的)。

2、接着,请看:

后来,它俩又来到文具店,文具店正在搞优惠活动,于是熊大拿出6元,熊二拿出4元,它们合起来买了15个笔记本,熊二说咱俩又平分吧!熊大瞪大了双眼。孩子们猜猜,熊大会怎么说?

生:它俩感情好,不会计较!

师:你真是一个懂礼貌的孩子,会照顾弟弟妹妹,能礼让别人。

生:这样分不公平。

师:那我们怎样分才合理呢?今天就来研究合理分配内容之按比例分配。(板书:按比例分配)

生答:多出钱要多分,少出钱要少分。

师:看来我们也要关注它们出的钱。

师:那它们分得本子个数的比与钱的比有什么关系呢?

生答:钱的比就是分得本子的比。

师:那我们能据它们的关系解决刚才的这个问题吗?

①生小组讨论分法,并阐明理由。

②反馈学生的分法。

③抽小组上台板演,并解释步骤。

④师:同意吗?还有不同的方法吗?

4、师:刚才呀同学都开动了脑筋。一共想出了3种方法,那么哪一种才是我们今天学的按比例分配呢?

5、怎样检验解答的结果是否正确呢?

可以用两种方法检验:

①把求得的熊大和熊二应分到的本数相加,看是否等于15本笔记本。

②把求得的熊大和熊二应分到的钱数写成比并化简,看是否等于3:2.

6、同学们经过了刚才的计算,那想一想:什么叫按比例分配呢?(课件:什么叫按比例分配)

7、生:把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。

8、师:(课件把一个数量按照一定的比来进行分配,这种分配方法通常叫做按比例分配。)齐读。师:例题中是把哪个数量拿来分配?(课件:15本笔记本)按几比几进行分配?(课件3:2)

9、师:同学们,现在我们已经解决了一些简单的按比例分配的问题,你能说一说按比例分配问题的解决方法吗?

课件出示:完善板书:用分数的方法:

(1)找出各部分量比,并化简。

(2)算出总份数。

(3)把比转化成分数,即各部分量占总量的几分之几。

(4)用总量乘各部分量占总量的几分之几,求出各部分量。

三、巩固练习

师:孩子们,我们生活中还有许多与按比例分配有关的知识,你们想去看一看吗?

1.把180本课外书按4:5借给五六两个年级。两个年级各借多少本书?

2.张阿姨和李阿姨去年合伙做生意,张阿姨出资10万元,李阿姨出资30万元。年底赚取了36万元利润。两人各应分得多少利润?

3.拓展延伸:长方形的周长是80厘米,长和宽的比是3︰2,它的长和宽各是多少厘米?

四、总结延伸

师:孩子们,生活中的数学问题太多了,我们一定要有一双数学的眼睛,善于发现身边的数学问题!今天我们就上到这里,下课。

比例的课件 篇2

一、启发导入

1、出示一幅中国地图,这幅中国地图是怎样绘制出来的?(没有学生回答)

你们看见比这张大的中国地图吗?(看见过)

同样是祖国的版土,画出来的地图却有大有小呢?(没有学生能够回答)

过了会儿,一个学生说是按比例画的。

2、教师说明:看来画地图要用到比例。(板书:比例)

今天我们就来学习比例的应用。

二、动手画教室的平面图,学习比例尺的意义

1、我们也来应用比例绘制一幅图,已知教室的长是9米,宽是6米,请你画出教室的平面图。

2、学生画图

3、学生汇报画图的方法,老师板书

图上距离:实际距离=比例尺

长:9厘米:9米=1:100

宽:6厘米:6米=1:100

长:4.5厘米:9米=1:200

宽:3厘米:6米=1:200

引出比例尺的概念。并抓住一个画得不象的同学,分析其原因。(随手画的,长和宽缩小的比例不同,从而告诉学生:同一幅图的比例尺应该是相同的)

4、比例尺的意义和求法

学生通过看书作记号,进一步理解比例尺的意义,然后在先前的中国地图上找到这幅地图的比例尺,并说明这个比例尺意义。

三、学习线段比例尺

1、说明前面我们学习的都是数值比例尺,还有一种线段比例尺。

2、学生看教材第48面,自学线段比例尺。

3、请学生汇报线段比例意义。

4、应用线段比例尺,测量北京站到天津站之间的距离大约是多少千米?

5、把线段比例尺改成数值比例尺。

四、学习放大的比例尺

1、老师出示一个小宝贝,大家看得清楚吗?

怎样利用比例尺的知识,让大家都看清这个宝贝的真面目?

2、教师在黑板上画图,(一个底面直径和高都20厘米的圆柱体)

能看清这个宝贝是什么了吗?(圆柱体)

3、求这幅图的比例尺

讲解放大的比例尺。

比例的课件 篇3

教学内容:教科书第45页的例5,“试一试”,“练一练”,练习十的第5~8题。

教学目标:

1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基本性质。

2、让学生在经历探究的过程中,体验学习数学的快乐。

2、教师:前面我们学习了一些比例的知识,谁能说一说怎样填空的?

3、比例的基本性质是什么?这节课我们还要继续学习有关比例的知识。

出示例5,前面我们学习过图形的放大与缩小,李明把照片按比例放大,放大后长是13.5厘米,你能求他的宽吗?

老师帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?引导学生理解放大前后的相关线段的长度是可以组成比例

如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。

师介绍:“像上面这样求比例中的未知项,叫做解比例。

比例的课件 篇4

1.联系生活,从生活中引入,激发了学生学习兴趣。

数学来源于生活,又服务于生活。《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学的过程”。程老师从学生所熟悉的生活中的例子入手,引导学生发现我们的身边处处都有数学。如,新课开始时,程老师利用“张红想知道旗杆的高度”,从这样一个学生身边的例子引入,不仅让学生感受了数学与生活的紧密联系,还有效地设置了悬念,激发了学生学好本节课知识的兴趣和决心。

2.有效地处理教材,让学生亲身经历数学模型的形成过程。

《比例的意义》这部分知识比较枯燥,也比较抽象,不易让学生直观的理解,与实际生活较远。而程老师处理的很好,把无声的、枯燥的教材进行了有声的、精彩的演绎。在这一节课中,程老师运用各种方法,通过对同一比例不同大小的国旗的长宽比例的探究,运用计算比值、课件演示、交流讨论、自主写出比例等等一系列的方法进行由浅入深地自主探索,实现了学生对“比例的意义”这一知识的真正理解和运用。

3、服务于生活,回到生活中去,解决生活中的实际问题。

在以上抽象出“数学模型”的基础上让学生进行拓展应用,体现“数学从生活中来,到生活中去的”思想,程老师在课的最后出示“大自然中的比例”,让学生利用学到的知识解决生活中的实际问题,既让学生感受了数学学习的价值,又和课的开始形成了呼应。圆满中结束本课的学习,学习效果很好。

比例的课件 篇5

一、教学目标:

1、让学生在实践活动中体验生活中需要比例尺。

2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义,并且知道什么是图上距离,什么是实际距离。

3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

2、利用比例尺的知识,解决生活中的实际问题。

三、教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

1、教师:今天,老师要测试一下同学们的反应能力,你们准备好了 吗?请看大屏幕?(课件出示“单位转换”)

2、学生集体回答。(个别难题,教师引导计算,并且提问学生:你是怎么想的?注意学生的鼓励表扬)

(1)师:今天我们班的两位同学产生了一场争论,你们想知道是怎么回事吗?

(3)通过刚才的观看,你们会支持哪一位同学呢?你有什么办法把操场画进本子吗?

(4)教师:你的想法很对,那你打算在本子上用多长的距离表示操场的长80米,用多长的距离表示操场的宽60米?

生1:用8厘米表示80米,用6厘米表示60米。(板书) (5)其他同学认为他说的对吗?我们一起来表扬他。

4、师:现在,在我们的黑板上出现了两组量,这两组量中,哪组是我们画在图上的距离?(8厘米和6厘米)哪组是实际生活中的.距离?(80米和60米)

5、小结:我们把画在图上的距离叫图上距离,把实际生活中的距离叫实际距离。(板书)

6、师:当我们用8厘米表示80米时,实际上把80米缩小了多少倍?(自由回答)我们一起来看看他们的比是多少?

(引导:比的前项和后项单位要统一,再划成最简整数比) 板书:8cm:80m=8cm:8000cm=1:1000

7、继续引导,并板书:6cm:60m=6cm:6000cm=1:1000

8、师:这里的1:1000说明我们用图上距离1cm表示了实际距离多少厘米?(1000厘米)

9、小结:像这种图上距离与实际距离的比,就叫比例尺。我们今天要学习的就是比例尺。(板书:比例尺)

2、补充说明比例尺的特点:比的前项与后项单位要统一,并且是最简整数比。例如:1:100或1/100 说明用图上距离1cm表示实际距离100cm。

3、小组比赛,说一说:以上比例尺分别说明了什么意思? 举例:1:200说明用图上距离1cm表示实际距离200cm。(分组回答)

师:为什么要写成前项是“1”,而不写成前项是别的数字呢? 生:这样可以清楚的看出图上距离代表实际距离多少厘米。 师:真了不起,真是一针见血。

5、师:同学们现在看到的是老师的房屋平面图,你能从看到哪些呢?(课件出示房屋图,生自由回答)

7、运用知识,尝试解决问题:

教师:现在请大家量一量,图中我的卧室,长是( )厘米,宽是( )厘米。

算一算我的卧室,实际的长是( )米,宽是()米,面积是()平方米。(生汇报,教师在课件上记录)

生1:先量出卧室的长4厘米,实际长=4厘米×100=400厘米=4米 生2:再量出卧室的宽5厘米,实际宽=5厘米×100=500厘米=5米 生3:卧室的实际面积是5×4=20平方米

比例的课件 篇6

教材分析

本单元是学生在已经学习了分数的基本性质,分数与除法的关系,分数除法的计算方法等内容的基础上进行学习的。主要内容有:比的意义、比的基本性质及化简,按比例分配解决实际问题。

在本单元的中间还穿插安排了“你知道吗”,介绍黄金分割比。单元的最后还安排了“综合运用”,在了解三峡工程的投资与效益的同时,感受有关分数知识和按比例分配在建设方面的应用。

这一单元分两个小节来编排。第一小节安排比的意义、比与分数、除法之间的关系,求比值、比的基本性质及比的化简。第二小节安排按比例分配解决问题。因为按比例分配是解决生产、生活中一些问题不可缺少的工具,所以在本单元中,它既是重点也是难点。教科书通过一些生产、生活的实例来呈现教学内容,既体现了数学来源于生活并服务于生活的思想,又能通过这些实例吸引学生,激发他们的学习兴趣。同时,比还是后继知识“正比例、反比例”学习的基础,要求务必学好。

教学目标

1、知识与技能

(1)理解比的意义,了解比、分数、除法三者之间的关系,掌握比的基本性质,并能化简比和求比值。

(2)结合具体情境,理解什么是按比例分配,并能解决有关的实际问题。

2、过程与方法

(1)经历探索比的意义,比值的含义,比的基本性质的过程,提高学生的整理水平,发展学生的思维能力。

(2)形成解决问题的一些基本策略与方法,体验解决问题的多样性,发展创新精神。

(3)学会从数学角度提出问题、理解问题,并能综合运用所学知解解决问题,增强应用意识。

3、情感、态度与价值观

(1)能积极参与教师组织的学习活动,体验数学活动充满着探索与创造。

(2)有获得成功的体验,对学习数学充满信心。

(3)感受数学与日常生活的密切联系,认识到许多问题可以借助数学的方法来解决。

教学重点

比的意义和性质,按比例分配。

教学难点

化简比。

教学关键

理解并正确运用比的基本性质。

学法指导

提供具体的教学情景,让学生在具体的环境中去理解、体会、应用。关注新、旧知识的联系,关注已有的知识和经验,放手让学生去探索、构建。当学生遇到困惑时,还要充分发挥教师的主导作用。

课时划分

本单元课时数:7课时。

1、比的意义和性质……………………………2课时

2、解决问题……………………………………3课时

比例的课件 篇7

课标分析:

《数学课程标准》明确指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”数学知识、数学思想和方法必须由学生在现实的数学实践活动中理解和发展。

本节课是在学生理解了分数与比的联系,掌握简单的分数乘、除法应用题数量关系的基础上学习的,是把比的知识应用于解决相关的实际问题的一个课例,它是“平均分”问题的发展,并在实际生活工作中有广泛的应用,学习它能使学生深刻体会到数学源于生活,又高于生活,最后又服务于生活的辩证关系。掌握了按比例分配的解题方法,不仅能有效地解决生活、生产中把一个数量按照一定的比进行分配的问题,也为今后学习“比例”、“比例尺”奠定良好的基础。

教材分析:

本节课是通过明明和爸爸的对话及文字介绍提供了人体内水分和其它物质的数据信息,借助“明明体内的水分和其他物质各有多少千克”的问题,引入对应用比的意义和基本性质解答有关按比例分配的实际问题的学习。

通过本节课的学习,学生能结合具体情境理解按比例分配的意义;掌握按比例分配的计算方法,并能较熟练地运用按比例分配的方法举一反三地解决实际问题,养成良好的分析理解能力。学情分析:

本节课是在学生理解比的知识及求一个数的几分之几是多少的应用题的基础上进行学习的,由于学生在平时对饮料、奶制品的配比问题还是比较熟悉的,所以本节课的内容学生还是容易理解和掌握的。教学目标:

1.让学生感受比在生活中的应用,会用自己的话解释按比例分配的意义。会画图分析问题,养成检验的好习惯。

2.学生在观察比较中,总结归纳出按比例分配问题的特征和解题方法。

3.学生在探索中,将按比例分配问题转化成份数、分数知识解答,并能找到解决问题的多种方法。体验解决问题策略的多样性。

教学重点:

1.正确理解按比例分配的意义。

2.掌握按比例分配应用题的特征和解题方法。

教学难点:能正确、熟练地解答按比例分配的实际问题。

教学过程设计:

一、创设问题,揭题导入

1.课件出示信息窗,呈现明明和爸爸的对话:明明:“我的体重是30千克。”爸爸:“我的体重是70千克。”

师引导:如果把明明体重平均分成两份,一份是水,另一份是其他物质,这时候我们就可以说:明明体内水分和其它物质的比是多少?

2.师继续引导:实际上,人体内水分与其他物质不是平均分配的,而是按一定的比来分配的。课件继续呈现信息:科学研究表明,儿童体内水分与其它物质的比是4:1;成年人体内水分与其他物质的比是7:3。

3.师:根据以上信息,你能提出什么数学问题?

生提问题:明明体内含的水分及其他物质各有多少千克?爸爸体内含的水分及其他物质各有多少千克?

【设计意图:从学生已经学过的“平均分”问题入手,找准知识的生长点,使学生体会到按比例分配问题是“平均分”问题的发展,从而初步理解按比例分配的含义。】

二、自主探究,解决问题

1.理解4:1的意义

师:弄清4:1的意思我们可以用什么方法?(引出线段图)

(1)生独立思考。

(2)小组活动,研究4:1的意思。

(3)小组交流。演示线段图课件,回顾整理。学生根据题意,完整说说4:1的意义。

儿童体内,水分占()份,其它物质占()份,一共是()份。水分与体重的比是(),其它物质与体重的比是()。水分的千克数占体重的(),其它物质占体重的()。

【设计意图:《数学课程标准》指出:“合作交流是学生学习数学的重要方式。”这一环节,使学生有了充分的探究时间和空间,在自主探索、亲身实践和合作交流的氛围中,解除困惑,弄清4:1的意思,并有机会分享自己和他人的想法。通过小组交流,又建立了按比分配的表象。最重要的是培养学生学会倾听和小组有序合作的学习习惯。】

2.借助线段图,解决问题。

师:我们借助线段图弄清了4:1的意思,知道了水分、其它物质和体重之间的关系,要解决这个问题还有困难吗?

生独立解答。师巡视,找到两种不同的方法,为接下来的交流做准备。

【设计意图:根据学生已有知识的特点,采用尝试教学法,给学生独立思考问题的空间和时间,使他们始终参与到探究问题、解决问题的过程中。然后安排他们交流解题思路,这样学生的学习更生动有效。在这个环节中,学生始终是学习的主题,教师是学习的组织者、引导者、合作者。同时培养学生敢于质疑和完整表达的习惯。】

3.全班交流,归纳两种不同的解题方法。生根据自己的理解用两种不同的方法解答。方法一:份数法

根据总份数是5份,用30/5表示出平均每份的千克数,再乘份数就得出了水分和其它物质的千克数。即:(1)求总份数;(2)先求一份是多少;(3)根据份数求出各部分的量。

方法二:分数法

运用分数乘法的知识解答,把要求的水分和其他物质的千克数转化成占体重的几分之几来表示,再根据求一个数的几分之几是多少用乘法计算的道理列式计算。即:(1)求总份数;

(2)求出各部分占总数的几分之几;

(3)根据分数乘法,求出各部分量。

【设计意图:通过对比总结,进一步归纳按比例分配在实际应用中的解题思路,理清各种数量间的相互关系。】

4.寻求方法,进行检验。

师:那我们做得对不对,怎么办?引出检验方法。

方法一:把求得的小明体内水分质量和其它物质的质量相加,看是否等于小明的体重。方法二:把求得的小明体内的水分和其它物质写成比的形式,看化简后是不是4:1。【设计意图:这一环节的设计意在培养学生解答问题后能养成及时检验的习惯。】

三、走进生活,体会按比例分配的意义。

1.学生用按比例分配的知识解决前面提出的问题:爸爸体内的水分有多少千克?

学生独立解决问题。2.生活中有许多按比例分配的例子,你都知道哪些?学生交流。

【设计意图:通过举生活中的实例,进一步加深学生对“按比例分配”的理解,巩固所学知识,明白它在生活中的广泛应用,体会数学与生活的练习。培养学生善于观察、注重积累的学习过程,做生活中的有心人。】

四、巩固练习,发展提高。练习一:基础题

1.一种糖水是糖与水按1:19的比例配制而成的。要配制这种糖水2千克,需要糖和水各多少千克?

练习二:变式题

2.某农药厂要生产新型农药,药与水的比是2:3.现在已经准备好药粉14千克,需要加水多少千克?

练习三:提高题

3.按建筑标准,建造楼房的混凝土中,水泥、黄沙和石子的比2:3:5时最牢固。学校要建造一栋教学楼,但现在水泥只有4吨,黄沙有12吨,石子却有24吨,总重40吨。如果由你负责质量的监理,你会怎么想?你将如何处理?

【设计意图:通过进一步练习,理清按比例分配问题的解题思路,体会按比例分配的重要意义,进而提高根据已有信息分析问题的能力,同时渗透做人的思想教育。】

五、课堂小结,反思提高。学了这节课,你有什么收获?

【设计意图:学生通过回顾学习过程,反思自己的表现,养成学习后能自我反思提高的学习习惯。】

比例的课件 篇8

教学目标:

1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;

3、通过实例使学生感受到数学来源于生活,生活离不开数学。

教学重点:

1、正确理解按比例分配的意义。

2、掌握按比例分配应用题的特征和解题方法。

教学难点:

能正确、熟练地解答按比例分配的实际问题。

教学过程:

一、创设情境

同学们,我们生活在深圳这个国际大都市相信对“投资”和“创业”这两个词一定不陌生吧?谁给大家说说。

1、PPT出示:李阿姨和张阿姨合伙开了家书店,第一年,她们各投资5万元,经过一年的苦心经营,除去交税,发工资和其他费用,共获利润10万元,你们说,她们各应分得利润多少万元?

2、小结:刚才两位阿姨由于投资额相同,所以他们获得的利润要按1:1来分配,这种分配方式也就叫平均分。

3、PPT出示:第二年,李阿姨仍然投资了5万元,张阿姨投资了4万元,除去一切开支,共获利润18万元。这一次,你说她们的利润该怎么分合理呢?

(组织交流)

师:这里的利润要按投资额的比进行分配比较合理。像这样,把一个数量按一定的比来进行分配,通常叫做按比例分配。(揭示课题:按比例分配)

二、初步感知

1、想一想,两位阿姨应该按怎样的比来分配?(板书:按投资数的比5:4进行分配)

2、谁能用自己的语言说说5:4的具体含义。

3、谁能用算式表示两位阿姨各应分得多少万元?

4、小结:通过刚才的生活实例,你认识了什么?(什么是按比例分配)

三、自主探究,合作研习

1、谈话:其实,在生活中,像这样的按比例分配的例子是很多的,你有没有遇到过?说一个给大家听听,今天,我们学习第75页内容,由于我们昨天已经布置了预习,所以我们按以下提纲进行交流。

2、此时用PPT出示“学习内容”“学习目标”和“导学提纲”。

学习内容:苏教版小学数学六年级上册第75页。

学习目标:

1、认识按比例分配的实际问题,掌握这类实际问题的解答方法。

2、认识连比,理解三个数量连比的意义。

导学提纲:

1、例5中“红色与黄色方格数的比是3:2”的含义是什么?

2、与同学说说例题中每种方法的解题思路。

3、你能画图理解这两种解题方法与同学交流吗?

4、你怎样理解“按照1:2:3涂成红、黄、绿三种颜色”这句话的含义?

5、“练一练”第2题是把180块巧克力按怎样的比来分配?

学生根据导学提纲进行下列活动,教师巡视,深入各小组交流,关注学困生。

(1)独立思考,尝试解答。

(2)小组交流,说说想法。

(3)组织交流,形成思路。

(4)选好内容,进行预展示。

四、集中展示

1、例5中“红色与黄色方格数的比是3:2”的含义是什么?

预设:

(1)这里的3:2,也就是在30个方格,红色方格占3份,黄色方格占4份,一共有5份,红色方格占了方格总数的3/5,黄色方格占方格总数的2/5。求红色方格有多少个,就是求30的3/5是多少,求黄色方格有多少个,就是求30的2/5是多少。

(2)把30个方格平均分成5份,3份是红色,2份是黄色。总份数3+2=5,红色方格为30÷5×3=18(格),黄色方格为30÷5×2=12(格)。

2、展示例5的解题思路及方法(结合图)

3、展示“试一试”的解题方法

4、说一说例5与“试一试”的相同点与不同点。

5、“练一练”第2题“练一练”与“试一试”的相同点与不同点。

小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?

预设:

(1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。

(2)根据份数先求总份数,再求每份数,最后求几份数。

(板书:比——分数各种数量占总数量的几分之几,用乘法;比——份数,先求总份数,再求每份数,最后求几份数。)

五、反馈检测

1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4:3,你知道参加各项比赛的女运动员有多少名吗?

2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4:7:9的三角形,请你帮低年级老师算算三条边的长度各是多少?

3、保税区小学六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?

4、一个标准的篮球场是长方形,它的周长是86米。长与宽的比是28:15。求这个标准的篮球场的面积。

六、课堂小结:

学了这节课,你有什么收获?

七、课堂作业:

76页,1、2、3、4。

比例的课件 篇9

教学目标

1、结合具体情境,通过计算,能说出比例的意义,能应用比例的意义判断两个比能否构成比例。

2、通过观察、比较、小组讨论说出比和比例的区别。

3、探索国旗中蕴含的数学知识,渗透爱国主义教育。

教学过程:

一、复习旧知

1、回顾什么叫做比?什么叫做比值?怎样求比值?(指名口答)

2、出示求比值的练习,学生独立完成,并发现其中两个比的比值相等。

二、情景导入

1、师:同学们,你们已经在胜利小学度过了六年的美好时光,在即将毕业之际,老师想放大一张咱们同台表演的照片作为纪念,却出现了这三种情况(课件出示三张师生同台表演的照片,其中两张照片变形了,另一张照片按比例放大)说说你的看法。

2、师:这张没有变形的照片是老师按比例放大的,(板书“比例”两个字),这就是我们今天要学习的知识。许多新的概念都和以前学过的知识相联系,同学们猜猜,比例和什么知识有关联?(指名口答)究竟比要满足什么条件才能成为比例呢?

三、探究新知

1、出示按比例放大的两张照片的长和宽的数据,说出长和宽的比,明确按比例缩放的照片场合宽的比相等。

2、多媒体出示三面国旗的长和宽,并提出问题。

天安门升国旗仪式:长5米,宽10/3米。

校园升旗仪式:长2.4米,宽1.6米。

教室场景:长60厘米,宽40厘米。

师:这些形状相同,大小各异的国旗,是不是隐含着什么共同点呢?你能写出它们长和宽的比并求出比值吗?(指名板演)

3、通过计算你发现了什么?(指名口答)

4、既然比值相等,那我们就可以把这几个比用等号连接起来,(板书)同学们这就是比例,用你自己的话说说什么是比例?

5、打开书找到比例的意义,并多几遍。

6、在这三面国旗的长和宽的数据中,还有哪些数据能组成比例,自己试着写一写。(生写比例,师巡视)。指名汇报写出的比例。

四、课堂练习

1、判断哪些是比例?

指名判断,并说明理由,明确比和比例的区别与联系。

2、教材40页做一做的第一题。

先独立完成再集体订正,明确如何判断两个比是否能组成比例就是计算它们的比值,看看是否相等。

3、教材40页做一做第二题。

以小组为单位汇报写出的比例。

4、教材43页练习八第一题。

明确什么是相对应的两个量,并写出能组成的比例。

5、写出比值是4的两个比并组成比例,写出比值是0、25的两个比并组成比例。

小组比赛哪个小组写得多。

五、课外拓展

介绍黄金比例

六、作业

练习八第二题、第三题。

七、课堂小结

总结本节课的收获。

比例的课件 篇10

一、说教材

《解比例》教学设计紧紧抓住“比例的基本性质”在比例与简易方程之间起到桥梁作用这一点展开,较好的体现了教师的主导作用和学生的主体作用。同时为学生提供了很多参与教学过程、展示才华的机会,从而受到了良好的教学效果。课时教学目标分三个围度:

1、认知:使学生认识解比例的意义,学会应用比例的基本性质解比例。

2、能力:使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。

3、情感:培养学生良好的学习习惯。

教学重难点:

1、认识解比例的意义。

2、应用比例的基本性质解比例。

二、教法与学法

采用了练习法、讲解法和自学学习法等。

三、说教学过程

一.复习引新

1.让学生通过两个简易方程回忆以前学过的解方程的知识,口述过程。

2.引导学生回忆比例的定义及比例的基本性质。 3.并利用比例的基本性质判断哪些比能够组成比例

4.引入新课。给出两题(1)3 : 2=():10(2)():0.5=8 : 2,小组合作讨论,计算出比例中的未知项,并派代表举手发言,给出答案并说说自己是怎么计算的。 5.学生自主学习课本,说说什么叫解比例。

根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题:解比例)二.教学新课

1.教学例2

播放幻灯片。引导学生指出谁与谁的比为1:10,设未知项为X,写出比例式,提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名两人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。

2.教学例3

播放幻灯片,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。

3.小结方法。提问:大家是根据什么来解比例的呢?

三.巩固练习

1.出示一道应用题让学生巩固解应用题的步骤,并找一位同学来板演,让一位同学来检查,充分发挥学生课堂互动与主动性。

2.给出两个比例,让学生分两组,每组一题,做在练习本上。指名口答x的值,老师板书过程。并强调说明检验时把x代入原来的比例,看两边比的比值是否相等。目的是巩固本节所学知识。

3,给出条件让学生自己写出比例并解出来,充分发展学生思维,让学生做学习的主人。

四.课堂小结

五.布置作业

比例的课件 篇11

【教学目标】

(1)知识与技能:使学生理解比例的意义,能应用比例的意义判断两个比能否构成比例。

(2)过程与方法:通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

(3)情感、态度与价值观:培养学生在实际生活中发现数学的存在,并在实际生活中能感受到数学的趣味,提高学生学习数学的积极性。

【教学重点】

比例的意义,应用比例的意义判断两个比是否能构成比例。

【教学难点】

应用比例的意义判断两个比是否能构成比例。

【教学准备】

多媒体课件

【教学过程】

一、创设情境,导入新课

同学们,当你看到这面迎风飘扬的五星红旗时,你会想到什么?(生自由汇报,师相机引出儿歌《国旗国旗真美丽》)一首《国旗国旗真美丽》仿佛让我们回到了一年级刚刚入学的那会儿,而如今,一转眼我们已经是六年级毕业班的学生了,希望你们能好好珍惜和利用小学阶段的最后一个学期加强学习,为进入初中继续学习数学知识打下良好的基础。

五星红旗是庄严而美丽的, 并且它与我们的数学也有着密切的联系,今天就让我们一起去研究国旗中的数学知识:比例(板书课题:比例)

从课题中我们不难看出,比例和我们以前学过的哪个知识有一定的关系(比)你们还记得比的意义吗?( 两个数相除又叫做两个数的比。)如何求比值?(比的前项除以后项所得的商叫做比值。)

好,下面我们就先来用比的知识解决几道国旗中的数学问题。

二、以比值为引线,认识比例

1、探索组成比例的条件

你在哪些地方看见过国旗?

问题:

1:你能说一说这四幅图中国旗的相同点和不同点吗?

2:你们想知道这些国旗的长和宽各是多少吗?

(发作业纸)作业纸上有四幅不同大小的国旗,请同学们四人一组任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,把你的发现和小组里的同学说一说?

哪个小组研究的是操场上的国旗与教室里的国旗各自长和宽的比?

(请一组学生板演汇报,教师小结板书:两个比相等)

这两面国旗长和宽的比值相等,我们可以用等号将这两个比连接起来。(板书:2、4∶1、6=60∶40)

指着这组相等的比说:像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是“比例的意义”(把课题板书完整)请同学们齐读。

请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答:等式;有两个相等的比)

(教师再强调:一定是比值相等的两个比才能组成比例。)

2、寻找国旗中的其他比例

师:你还能从四面国旗中找出哪些比例?

(学生写在练习本上,然后汇报。教师点击课件)

3、介绍比例的第二种表示方法

师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书: =)

4、强调比例的计算单位要统一

出示课件,提出问题,学生判断。

小结:在比例的计算中,单位要统一。

5、区分比和比例。

师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流:你觉得比和比例有哪些区别?)

形式不同:比由两个数组成;比例由四个数组成。

意义不同:比表示两个数相除;比例表示两个比相等的式子。

三、自主尝试,巩固比例

(一)数的'比例

课本33页“做一做”第1题。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)

(二)形的比例

课本33页“做一做”第2题。两个具有放大关系的三角形图中的四个数据可以组成多少个比例?

(三)生活中的比例

师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!

课本36页第1题(学生独立完成,小组订正交流。)

(四)拓展中的比例

写出比值是5的两个比,并组成比例

四、全课小结

通过这节课的学习,你了解了比例的哪些知识?你还想研究比例的什么知识?

比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

比例的课件 篇12

教学内容

教科书第58-59页例1,课堂活动及练习十三1-3题。

教学目标

1.使学生理解反比例的意义,能正确判断成反比例关系的量。

2.经历反比例意义的构建过程,培养学生的探索发现能力和归纳概括能力。

3.使学生体会反比例与生活的联系,进行辩证唯物主义观点的启蒙教育。

教学重点

引导学生正确理解反比例的意义。

教学难点

正确判断两种量是否成反比例。

教学过程

一、复习旧知,感受新知

情景游戏:对口令

(1)同样的面包单价:2元∕个。老师说个数,学生对总价(对口令的同时用课件展示出下表)。

表1买同样的面包

买的数量(个) 1 2 3 4 5……

总价(元) 2 4 6 8 10……

教师:面包总价与个数之间有什么关系呢?它们成什么比例?为什么?

反馈:面包的总价与个数成正比例。因为它们是两种相关联的量,面包个数扩大或缩小若干倍,总价也随着扩大或缩小相同的倍数,并且它们的比值(单价)一定。

根据学生的回答板书,成正比例的量所具有的'三个特征:

①两种相关联的量②变化有规律③一定的量

(2)共有30个苹果分给小朋友。老师说出小朋友的人数,学生回答分得的苹果个数。(对口令的同时用课件展示出下表)

表2 30个苹果分给小朋友

小朋友的人数(人) 1 3 5 10……

每个小朋友分得个数(个)30 10 6 3……

从这个表中,你有什么发现?

反馈:小朋友的人数与每个小朋友分的个数的乘积都是30;它们是相关联的两种量;小朋友的人数越多,每个小朋友分得的苹果个数就越少……

提问:小朋友的人数与每个小朋友分得的苹果个数成正比例吗?为什么?

教师:那么这两种量到底是一种什么关系呢?今天我们就一起来学习新的知识。

二、对比探究,获取新知

1.感知几种不同的变化规律

(1)某旅游公司的导游带领60名游客来到井冈山游览,准备分组活动,提出的分组建议如下表。

表3 60名游客在井冈山游览

每组人数 3 5 6 15

组数 20 12 10 4

教师:谁来说说,你是怎样算每组人数和组数的?

抽几名学生说出自己的计算方法。

教师:从这个表中你发现了什么规律?

反馈:总人数60人没变,每组人数和组数的乘积是一定的;每组的人数在扩大,组数反而缩小……

(2)游览的第一天晚上,导游写了一篇情况总结,要把它存入电脑。

表4打一篇稿子

每分打字(个) 120 100 75 50

所需时间(分) 25 30 40 60

教师:必须先算出哪个量?为什么?学生独立计算,然后集体订正。

(3)第二天,导游将带领这批游客,行一段路程。

表5行一段路程

已行的路程(km) 1 2 3 4

剩下的路程(km) 19 18 17 16

填这个表时,你是怎样想的?集体订正。

表6行一段路程

路程(km) 12 20 24 36

时间(时) 3 5 6 9

集体订正。

2.分类区别,概括意义

(1)教师:请同学们把这6张表进行分类,你会怎么分?为什么这样分?带着这个问题,请同学们分组讨论。

教师巡视,听取各小组意见,加强指导。

(2)汇报交流

反馈1:表1,6分一类,表2,3,4,5分一类。

反馈2:表1,6分一类,表2,3,4分一类,表5单独分成一类。

教师:为什么这样分类?

引导学生说出:表1,6成正比例分一类;不成正比例的表2,3,4它们的乘积一定,分成一类;表5是和一定,单独分成一类。

教师:现在我们一起来找出表2,3,4的共同特征。

学生1:每个表中的两种量都相关联。(板书:相关联)

学生2:一种量变化另一种量也随着变化。

学生3:从变化规律上看,表2中,人数越多,每人分得的个数越少,人数越少,每人分得的个数越多。

学生4:表3中,每组的人数扩大,组数反而缩小;表4中,每分打字的个数越少,所需要的时间反而越多……

教师简单概括:一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。两种量的变化方向正好相反。(板书:反)

学生5:表中两种量相对应的两个数的乘积是一定的。(板书:积)

正比例是一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数;而表2,3,4中,是一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。

(3)概括得出反比例的意义

教师根据学生的回答,引导学生概括得出:

两种相关联的量。

一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。

两种量相对应的两个数的乘积是一定的。

这是你们自己总结概括出来的结论,那么,你能给它们取个名字吗?

(揭示课题:反比例的意义)

像这样的两种量,叫做成反比例的量,它们的关系叫做反比例关系。

4.举例

抽生说一说生活中还有哪些成反比例的量。

学生1:路程一定,所行的时间与速

5.区分

表5中,一段路程20km一定时,已行的路程和剩下的路程成比例吗?为什么?

引导学生明确:虽然这也是两种相关联的量,但是它们的变化规律是增加或减少相同的数,而不是扩大或缩小相同的倍数;它们的和一定,而不是商一定或积一定。所以,它们不成比例。

三、直观操作,加深理解

1、完成第60页课堂活动1题

教师:请同学们看第1题的要求。哪位同学愿意说说你看了题目后的想法?

2、完成第60页课堂活动2题

3、完成第61页课堂活动3题

四、巩固练习,深化认识

练习十三1-3题,主要抓住正比例的本质属性“商一定”,反比例的本质属性“积一定”,要求学生独立完成,再集体订正。

五、课堂总结

今天,我们一起学习了什么?你有什么收获?

GZ85.com扩展阅读

解比例课件


为了便于使用,以下是编辑整理的“解比例课件”。每位老师在课前都需要一份完整的教案课件,相信老师对于编写教案课件并不陌生。教学的核心内容应该写在教案课件中,以引导学生对知识进行深入理解和消化。如果需要的话,这里提供一个参考。

解比例课件(篇1)

教学目标

1.经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2.在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3.进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点

正确理解正比例的意义,并能准确判断成正比例的量。

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,概括出正比例关系的概念。

教学资源

学生已学过一些常见的数量关系和计算公式,掌握比和比例的知识。

预习菜单。

预习作业设计

1.填空

①已知路程和时间,怎样求速度?()Ο()=速度

②已知总价和数量,怎样求单价?()Ο()=速度

③已知工作总量和工作时间,怎样求工作效率?()Ο()=速度

2.预习例1观察下表,思考下列问题:

一辆汽车行驶的时间和路程如下:

时间(时)

1

2

3

4

5

6

……

路程

(千米)

80

160

240

320

4000

480

……

①表中有哪两种量?

②这两种量的数值分别是怎样变化的?

③你发现这两种量变化有什么规律吗?如果看不出规律的话,可以先写出几组相对应的路程和时间的比,求出比值,想想有什么规律。

学程设计导航策略调整反思

一、揭示题课,认定目标(预设2分钟)我们学过一些常见的数量关系,这节课我们进一步来研究这些数量关系中的一些特征。通过学习我们要弄清什么样的两个量成正比例,怎样判断两种量是否成正比例。

二、交流合作,提炼建模(预设7分钟)

1.出示例1小组交流预习情况。

2.全班交流汇报,探究新知:

①理解“相关联的量”。

②用式子表示路程和时间的变化规律。

③学生看书、质疑。揭示路程和时间是成正比例的量。

3.根据板书完整地说一说表中路程和时间成什么关系。组织全班交流

1.引导学生认识:时间变化,路程也随着变化,这样的两种量,就叫做两种相关联的量。(板书:两种相关联的量)实际生活中,还有哪些相关联的量呢?跟你的同桌说一说。结合举例,抓住“随着”一词说明:一种量的变化,是因为由另一种量的变化引起的,这样的两种量才是相关联的量。

2.引导学生用式子表示路程和时间的变化规律,教师相机板书:路程/时间=速度(一定)

3.象这样的两种量,它们的关系叫什么?请同学们打开课本,自己获取有关概念。组织汇报:通过看书,你知道了些什么?还有什么疑问?(老师适时板书)

4.教师指导学生完整地说一说表中路程和时间的正比例关系。

三、抽象分析,掌握方法(预设10分钟)1.围绕学习菜单完成“试一试”。

①独立思考。

②小组交流。

2.全班交流汇报。完整地说说表中总价和数量成什么关系。

3.比较例1与试一试,思考并讨论,这两个题有什么共同点?

4.如果用字母χ和У分别表示两种相关联的量,用κ表示它们的比值,用式子怎样表示正比例关系?

5.成正比例的量具备哪两个条件?1.引导学生完整地说说表中总价和数量成什么关系。

2.教师相机板书正比例的关系式。

3.引导学生提炼出成正比例的两个条件。

四、分层练习,内化提升(预设11分钟)

1.完成第63页“练一练”。学生先独立思考并作出判断,再说出判断理由。

2.做练习十三第1—3题。第1、2题,学生先算一算,想一想,再交流汇报。第3题学生先画出放大后的图形,计算它们的周长和面积,再思考题中的两个问题。

3.学生举例并说明理由。

先小组交流,然后全班交流。

4.判断并说理。“小张跳高的高度和他的身高”成正比例。

1.引导学生有条理地说明判断的思考过程。

2.通过讨论使学生进一步明白:只有当相关联的量中每一组对应数的比值一定时,这两种量才成正比例。

3.生活中哪些量之间存在比例关系?我们学过的数量关系中,哪些是正比例关系?下面进行一个举例和说理比赛,各小组至少举一个正比例关系的例子,并说明理由。组织学生“举例及说理”交流。

4.老师也举了一个正比例的例子,请大家和我作一辩论。

小张跳高的高度和他的身高。让学生应用正比例的意义,尝试着判断数量之间的关系,是对正比例意义学习的强化,还培养了学生的应用意识。

1.学生独立作业,教师巡视,个别辅导差生。

2.学生完成作业后,反馈矫正。

3.引导学生自我评价课堂学习表现。

教学反思

我是这样预设的,以例1为导路线,通过说、想、听等环节刺激学生的感觉器官,“试一试”完全尊重学生的自主权,根据学习菜单让学生独立完成,讲练结合,尽量做到老师少讲、精讲,时间控制在(15分钟)左右,学生主栽着整个课堂。苏霍姆林斯基曾说过:“在人的内心深处,都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中这种需要特别强烈。”上完这节课,我更加深刻的体会到这一点:学习活动的主体是学生,开放型的数学教师不仅关注学生的智慧生命,还关注学生的情感价值生命。我深信本节课的后半部分,通过学生自己探索、研究、发现、人人练习的过程,体验到成功的喜悦。

解比例课件(篇2)

1.使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2.联系生活实际创设情境,体现解比例在生产生活中的广泛应用。

3.利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情感、价值观的发展。

重点:

使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2.什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?

(1)读题。

(2)从这道题里,你们获得了哪些信息?

(3)在这信息里,关键理解哪里?(埃菲尔铁塔模型与埃菲尔铁塔的高度比是1:10)

(4)这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)

(6)我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)

(7)这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

(8)根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)

(9)这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?

(10)不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)

(11)指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)

(12)为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)

(13)对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)

(14)这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

(15)我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例.)

(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。

过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?

(3)在这个比例里,哪些是外项?哪些是内项?

在一个比例中,两个外项的乘积正好互为倒数,已知一个内项是3,另一个内项是多少?

解比例课件(篇3)

教学目标

知识与技能:

1、知道什么叫做解比例,会根据比例的性质正确地解比例。

2、培养学生认真书写和计算的习惯。

过程与方法:

经历解比例的过程,体验知识之间的内容在联系和广泛应用。

情感与价值观:

感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

教学重难点

教学重点:

解比例

教学难点:

解比例的方法。

教学工具

ppt课件

教学过程

一、复习准备

1、提问

师:同学们,前面我们学习了比例,

出示:1、什么叫做比例?2、比例的基本性质是什么?

(分别指名学生回答)

2、想一想

出示比例:3:2=( ):10

师:你能利用比例的知识说一说括号里应填几?为什么?

生:可以根据比例的意义3:2 =1.5,想( ):10=1.5(15比10等于1.5);还可以根据比例的基本性质,两个外项的积等于30,想( )×2=30(15乘以2等于30)。

师:你能快速地说出这个括号里应填几吗?

出示比例:( ):0.5=8 : 2

师:仔细观察这两个比例,其中几项是已知的?(三项)另一个项是未知的,我们把它叫做(未知项),一般用x表示。根据什么就可以求出这个未知项?(比例的基本性质)

像这样,求比例中的未知项,叫做解比例。(课件出示)。

今天这节课我们就来学习解比例。(板书课题,学生齐读)

二、探索新知

1、出示埃菲尔铁塔情境图。

师:解比例在我们生活中的应用是十分广泛的,同学们,请看:

这是法国巴黎最有名的塔叫埃菲尔铁塔,高度约320米。我国北京世界公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道.你们能帮帮他们吗?那我们先来看看这道题。

2、出示例题,教学例2。

指名学生读题。

师:从这道题中你能得到哪些数学信息?(指名学生回答)

问:1:10是谁与谁的比?你又能写出怎样的数量关系式?

学生回答后,课件出示:模型的高度:铁塔的高度=1:10。

师:在这个关系式中,谁还是已知的?

(埃菲尔铁塔的高度是320米。)

师:在这个关系式中,我们知道其中的(三项),另一个项不知道,可以设为x,(课件出示)这样就可以写出一个比例,谁来说说看?

课件出示:X:320=1:10

师:怎样解这个比例呢?

引导学生讨论后回答:应用比例的基本性质,把比例写成方程。

师:同学们会解方程吗?试着把这个方程解出来。

学生投影展示解比例过程,师适时讲解强调。

师:我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是否相等.)或用比例的基本性质(看看两个外项的积和两个内项的积是否相等来检验。

师:解比例在生活中的应用十分广泛,我们来总结一下解决这类问题的一般步骤:(先根据问题设X——再根据数量关系列出比例式——然后根据比例的基本性质把比例转化为方程——解方程)最后别忘了检验噢!(课件出示)。

师:现在同学们会用解比例的方法来解决问题了吗?

3、教学例3

师:这个比例你会解吗?出示例3

师:它与例2有什么不同?(这个比例是分数形式)应该怎样解呢?同桌先说一说,然后指名学生说一说你是怎样解这个比例的。(可以根据比例的基本性质---交叉相乘的积相等把比例转化成方程,然后解方程求出未知数X)

师:想一想括号里应填什么?

师:回顾一下我们是怎样解比例的?

学生说完课件出示,强调最后别忘了检验。

三、巩固练习

1、课件出示4道解比例,学生独立完成,投影展示。

2、解决问题:教材“做一做”第2题。(学生分析后指名学生板演,其他练习本上独立完成,然后集体订正)

3.你知道吗?

侦探柯南之神秘脚印

四、布置作业

课下,和小组成员想办法测量出我们学校旗杆的高度!

五、课堂总结

通过这节课的学习,你有那些新的收获?

学生畅所欲言。(什么叫解比例?怎样解比例?)

板书

解比例

求比例中的未知项,叫做解比例。

解比例课件(篇4)

教科书第50页例3,练习十一3~6题。

1、使学生理解解比例的意义。

2、使学生进一步掌握比例的基本性质,学会应用比例的基本性质解比例。

3、让学生在解比例的过程中,培养学生主动学习知识的意识和能力,感受到学习数学的乐趣,增强学习的兴趣和自信。

(1)什么叫比例?什么叫做比例的基本性质?

(2)下面哪一组中的两个比可以组成比例?用比例的基本性质判断。

学生独立完成后,抽取个别学生的答案在视频展示台上展示。

(3)填空。

教师:在一个比例式中,共有四项,如果已知其中的任何三项,要能很快求出这个比例中的另外一个未知项,就要用我们今天学的知识——解比例。

教师:像这样知道比例中的任意三项,求另外一个未知项叫做解比例。同学们能用以前学过的知识求出34∶12=x∶49中x的值吗?

引导学生先独立思考,再组织学生合作交流。交流中既要听取学生的意见,又要注意引导学生从多角度思考解决问题的方法。例如,把比看做除法,那么34∶12=x∶49就可以转化成34÷12=x÷49,学生就可以运用原来学习解方程的有关知识来解;也可以应用比例的基本性质,把34∶12=x∶49转化成12x=34×49来解。

教师:同学们真聪明,想出了这么多解决问题的方法。下面请一个同学回答,你把34∶12=x∶49转化成12x=34×49来解,根据是什么?(根据比例的基本性质。)

教师:你能根据比例的基本性质,把下面的比例改写成含有未知数的乘法等式来解吗?在黑板上出示:

学生解答,抽取几个学生的作业在视频展示台上展示,并集体订正。

3.教学“试一试”

出示 教师:这个比例和前面几个比例有什么不同?(这个比例是分数形式。)

指出它的内项和外项。像这样的.分数形式的比例,同学们会用比例的基本性质来解吗?想一想,怎样解?

学生讨论并解答,完成后,请学生说一说是怎样求出x的值。

引导学生说出要注意用交叉法找出比例中的两个内项和两个外项。

教师指导学生进行验算,注意书写格式的规范性。

(1)学生独立完成练习十一的第3题和第5题。

(2)讨论完成练习十一的第4题。

教师先引导学生做:这道题需要逆用比例的基本性质。在比例里,两个内项的积等于两个外项的积。这道题是知道两个积相等,如果我们把左边的两个数当作比例的内项,那么右边两个数就应当作为比例的外项,这样就可以写出比例式了。如果我们把左边的两个数当作比例的外项,那么右边两个数就应当作为比例的内项,也可以写出比例式。

学生自己写出比例式,课件显示:

如果把6,1.2作为外项,有下面这些比例式:

如果把6,1.2作为内项,有下面这些比例式:

教师:写比例时,我们要按照一定的顺序来写才能写出所有的比例式,即不重复又不遗漏。

(3)学生独立完成练习十一的第6题,然后教师讲评。

(1)什么叫解比例?

(2)用比例的基本性质解比例的一般方法。

①根据比例的基本性质把比例改写成方程。

②根据以前学过的解方程的方法求解。

(3)这节课你运用了哪些学习的方法?还有哪些问题?

教学反思:本课时新内容不多,主要把新知识融入学生原有认知结构中,依靠学生已掌握的知识自己探索解决问题的'方法,所以在本课设计时重点展示如何将新知识(解比例)转化成学生原有知识(解方程)的过程,并且这个转化过程完全建立在学生的自主探索上,教学中运用“同学们能运用原来学习的知识求出34∶12=x∶49中x的值吗?”的提问,密切新旧知识之间的联系,建立用原有知识推动新知识学习的策略,然后运用“独立思考—相互交流—归纳总结”的学习方式,把学生推上学习的主体地位,使学生参与学习的全过程,帮助学生获得成功体验。

解比例课件(篇5)

教学内容:

教材第84页例1---3题,练习十七第1、3题。

教学目标:

1、进一步理解比和比例的意义与基本性质,掌握比和分数、除法的关系。能够正确、迅速地求出比值和化简比。

2、应用比的意义求出平面图的比例尺,并根据比例尺求图上距离和实际距离。

3、体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

教学重点:

掌握比和比例的意义与基本性质。

教学难点:

根据比例尺求图上距离和实际距离。

教具准备:

多媒体课件

教学过程:

一、 导言引入课题

比和比例(一)

二、教学例1

先在下表中写比和比例的一些知识,再举例说明。

比 比例

意义

各部分名称

基本性质

三、教学例2

比和分数、除法有什么联系?先填写下来,说一说它们的区别。

联系 例子

各部分名称

分数 分子 分数线 分母 分数值

除法

做一做:5:6=( )( )

四、教学例3

比的基本性质、分数的基本性质、商不变规律之间有什么联系?

1、学生交流

2、化简比。

3、化简比与求比值有什么不同之处?

一般方法 结果

求比值

化简比

五、解比例

X= :2【说一说思路和方法】

六、比例尺

1、什么叫做比例尺?

2、说出下面各比例尺的具体意义。

①比例尺1:3000000表示_____________

②比例尺20:1表示 _____________

3、求比例尺: 一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图的比例尺是多少?

4、求实际距离:在比例尺是 的地图上,量得A到B的距离是5厘米。求AB两地的实际距离?

5、求图上距离:甲乙两地相距200千米,在比例尺是 的地图上,甲乙两地用多少厘米表示?

七、知识应用

练习十七第1、3题。

八、总结梳理

回顾本节课的学习,说一说你有哪些收获?

板书设计:

比和比例(一)

比和比例的意义与性质。

比和分数、除法的关系。 比和比例(一)

比、比例的基本性质的用途。

比例尺。

比例尺的应用。

教学反思:

在教学中,让学生重温小学阶段比和比例的有关知识并进行系统整理。先让学生回忆,配合相关的练习题,让学生进行训练,加深学生的理解。进一步理解掌握比和分数、除法的关系。能够应用比的意义求出平面图的比例尺,并根据比例尺求图上举例和实际距离培养学生用数学眼光观察生活的习惯。

解比例课件(篇6)

一、教材分析

《比例尺》这节课是在学生学习了比和比例的基础上进行学习的,它是比和比例知识的延伸和应用,比例尺不是一把真正意义上的尺子,却是一个日常生活中极其重要的工具。在现实生活中有着广泛的应用,因此,对比例尺的学习具有很现实的意义。

二、学情分析

本课内容是《义务教育课程标准实验教科书.数学》六年级第十二册第

48、49页。是在学生学习了比和比例有关知识的基础上学习的,学生对于常见的平面图和地图并不陌生,但对“比例尺”这个概念可能会有些生疏和抽象,课堂上将紧密借助学生已有的知识和经验引导学生,主动建构知识,让学生充分动手操作,动脑思考,经历“比例尺”知识的形成过程。

三、目标与要点分析教学目标:

(1)在具体情境中理解比例尺的意义,并能根据比例尺的意义求一幅图的比例尺。

(2)能够根据比例尺知识求实际距离。

(3)培养学生综合运用知识的能力;培养学生动手测量和画图的能力。

过程与方法:通过学生的自主探究、合作交流,培养学生的探究意识、合作意识、创新意识。

情感、态度与价值观:使学生感受数学与生活的联系,体验学习数学的价值,增强学好数学的情感。

本节课的重点是理解比例尺的意义。难点是把线段比例尺改写成数值比例尺。

为了抓住重点,突破难点,本节课将提供较大的探索空间和众多的动手操作时机,让学生充分动手动脑,主动建构知识,而不是硬生生地把知识强塞给学生。

四、教学策略设计

比例尺是人们约定俗成地表示图上距离与实际距离的关系。以往我们执教传统教材,是直接给出图上距离和实际距离,然后让学生求图上距离与实际距离的比,要求化成单位相同再写比,这样的比就是比例尺。表面上看学生似乎已经知道了比例尺,但是比例尺为什么应运而生?学生只是被动接受知识。如何让学生经历比例尺的产生过程,教材创设了设计足球场平面图的情境,让学生在设计过程中体验到比例尺产生的必要性——绘制平面图时需要把实际距离缩小一定的倍数,既体现了新理念,又让学生有了更多自我体验和感悟的时间与空间。

有了以上的思考,就有了我第一次设计尝试,遗憾的是学生面对一个长8米,宽6米的教室,没有意识到在纸上长要画多长,宽要画多长,按多少“比”在来画。从学生完成的作品来看,有3人用1∶1000来画的,有13人画出长的比是1∶500,宽的比是1∶300,两个比不同,导致学生画出的形状与原来足球场的形状不同。大部分学生画出了任意长和任意宽,组成一个长方形,标上实际距离。这种情况是不是学生缺乏一种体验,一种按倍数缩小并缩小相同倍数的体验,因此学生不能自动生成。以上的教学实践引起了我的反思,重新尝试第二次设计,收到了较好的效果。

教师准备:一幅李成俊同学的照片

五、教学过程设计

(一)、生活原型再现:

师:(出示李成俊同学的照片)你们认识他吗?他是谁?生:李成俊

师:怎么可能呢?照片上的人这么小,怎么会是他呢?生:是缩小了??

师:如果李成俊的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?生:不像他了,像丑八怪??师:那怎样才能像他呢?生:都要缩小。

师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?生:不像,要缩小相同的倍数。??

(二)、创设情境,以疑激思

同学们,昨天我们测量了教室的长是8米宽是6米,现在老师提议大家以小组为单位,当一回绘画师,画出教室的平面图。再动手之前,先思考这两个问题:

1、要把教室的平面图画在纸上,你有这么的的纸吗?你怎么办?

2、随便在纸上画一个长方形,这一定是教室的平面图吗?

(三)、独立探究,合作交流。

(1)通过学生讨论,引出学习要求:A、你是怎样确定图上的长和宽的长度;

B、图上的长和实际的长的比是多少,并化简;

C、写上图上的宽和实际的宽的比,并化简;

根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。(2)学生小组学习(3)学生汇报设计思路

生1:我是把实际的长和宽都缩小1000倍,图上的长就是8厘米,宽就是6厘米,这样的长方形图就是足球场的平面图。

(根据学生的汇报板书)图上距离:实际距离

8厘米:8米=8:800=1:1006厘米:60米=6:6000=1:1004厘米:8米=4:800=1:2003厘米:6米=3:600=1:200揭示比例尺的意义:图上距离和实际距离的比,叫做这幅图的比例尺。

图上距离:实际距离=比例尺

师:1:200的比例尺,说说你是怎样理解的?

生:表示图上距离是实际距离的1/200;

表示实际距离是图上距离的200倍;图上距离和实际距离的比是1:200;图上1厘米表示实际距离2米;

(四)、数值比例尺和线段比例尺的认识

1、示中国地图。

师:比例尺1:10000000表示什么实际意义?

生:图上距离1厘米是实际距离的1000000000厘米。

2、示北京市的地图。

师:观察这幅地图的比例尺有什么不同?表示什么实际意义?生:这是一幅线段比例尺,表示图上1厘米表示实际50千米。

3、学生读教科书。

师:书中这两种比例尺分别叫什么?它们有什么不同?

生1:前面的一种叫数值比例尺,后一种叫线段比例尺。数值比例尺没有单位.生2:实际距离都比图上距离大。

师:是不是所有的比例尺都是实际距离比图上距离大呢?请同学们看书第49页后,回答并说为什么?

生:不是。因为有的机器零件很小,需要把实际长度按一定的比扩大后,再画在图纸上,这就出现了图上距离比实际距离大的比例尺。师:图中的2:1表示什么?

生:图中的2:1表示图上距离是实际距离的2倍。

师:请同学们观察这些比,你有什么发现?生:这些比的前项和后项都是1.小结:为了计算,通常把比例尺写成前项或后项师1的比。

4、教学例1.师:我们能不能把它(手指上面的线段比例尺)改成数值比例尺呢?指名学生板书:图上距离:实际距离1厘米:50千米

=1厘米:5000000厘米

=1:5000000师:做这类题,因该注意什么?

生:统一单位,比例尺不带单位名称,一定是图上距离除以实际距离。

(五)加深理解,拓展应用

1、判断题:

①小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。

②某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。

③一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离

2、解决生活中的问题:

一栋楼房东西方向长40m,在图纸上的长度是50cm.这幅图纸的比例尺是多少?

3、拓展应用:

我们学校操场的长是200米,宽是100米.同学们,你们能自己确定比例尺,把操场的平面图画下来吗?

板书设计比例尺图上距离:实际距离=比例尺

图上距离=比例尺

实际距离

8厘米:8米=8:800=1:1006厘米:6米=6:600=1:1004厘米:8米=4:400=1:2003厘米:6米=3:600=1:200

教学实施

本节课在两个方面进行了创新设计:

一是情境导入,由于第一次设计时,让学生一进课堂就设计一个教室的平面图,学生们不知道平面图要按照一定的倍数缩小,而且要缩小相同的倍数,缺少这种经验和体验,出现了任意画的情况。因此,二度设计时我选择了生活原型——从照片引入,学生对这种生活常识应该说不陌生,为画平面图做好了很好的铺垫。

二是结合教室实际的长和宽和图上的长和宽,使学生初步确定什么是图上距离和实际距离,在动手画图时,对如何确定图上的长和宽就是要将实际的长和宽缩小一定的倍数,也就是确定图上距离和相对应的实际距离的比,并引出比例尺的意义,再结合两幅地图的比例尺介绍线段比例尺和数值比例尺,又通过一个机器零件的放大的图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺改写成数值比例尺。

六、教学反思

上完课,我有一种意犹未尽的感觉,经历了实践与理论的深思与探索,对新课标有了更深入的理解。

1、在学生已有的经验上学习数学

新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示学生的照片,学生对照片上的人是按倍数缩小了这种生活常识有了深刻的体验,再让学生来画教室的平面图,可以说是水到渠成的。

2、让学生经历了知识的形成过程

只有体验过,理解才会深刻。让学生在画教室平面图的交流互动中,体验探究比例尺的产生过程,理解比例尺产生的必要性。同时在探究过程中,学生对比例尺的意义理解是多方位的,个性化的。有了学生个性化的体验,才有了后面解决问题的个性化的表达。

3、让学生密切联系了生活实际

数学来源与生活,又应用于生活实际。本节课从让学生设计教室平面图,到让学生把线段比例尺改成数值比例尺,“生活中处处有数学“的理念贯穿了整个教学的始终,使学生真切地感受到学习数学的价值。

解比例课件(篇7)

1.让学生在实践活动中体验生活中需要比例尺。

2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。

3运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

4学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

正确理解比例尺的含义。

运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

多媒体

师:同学们,老师家的房子要扒了,老师想买个面积大一点的房子,现在老师有两套房子的平面设计图,你能帮老师选择买那套房子吗?看谁能帮老师解决这个难题。(出示投影)

1、计算

师:下面就请你们来当一个小小的设计师,课前我们已测量出教室的长是8米,宽是6米,请你们把教室的平面图画在老师发给你的白纸上,并完成表格。

师:在画之前,先看清楚要求。(课件显示):

(1)确定图上的长和宽;

(2)个人独立画出平面图;

(3)在下表中填出图上的长、宽与实际的长、宽的比,并化简。

2、展示交流

你这样想?怎样画?请告诉大家。(学生展示交流)

谁有不同的想法、画法?(学生充分交流不同的意见)

(设计意图:在交流中学生思维互相碰撞,提高认识。另外,有利于教师了解学生的学习基础。)

3、评析 感受感受比例尺的价值

他们画得像吗?

(指画得像的图片)问: 其中的奥秘是什么呢?

请想一想,说一说。明确图上长、宽与实际长、宽的比是一定的,画出的平面图才逼真。

(设计意图:思考图形画得象不象?为什么?产生认知矛盾,引发深层次的思考。)

4、揭示概念

象这样,在绘制平面图时,需要确定图上距离和实际距离的比,这个比叫做这副图的比例尺。

投影出示比例尺的概念。

5、总结求比例尺时的注意事项

(1)求你所画那副图的比例尺

(2)求老师所买那套房子的实际面积

本节课你有哪些收获,还有那些不明白的地方?

解比例课件(篇8)

一、说教材

我从三个方面进行说明

(一)教材分析

教材在北师大版六年级上册安排了比的意义、比的化简与比的应用等内容。体会了生活中存在的变量之间的关系。正比例关系是数学中比较重要的一种数量关系,为此,教材密切联系学生已有的生活经验和学习经验,设计系列情景,让学生体会生活中存在着大量相关联的量,他们之间的关系有共同之处,从而引发学生的讨论与思考,并通过具体的讨论,使学生认识成正比例的量以及正比例在生活中的广泛存在。教材从不同的角度(实际生活、图形)提供了有利于学生探索并理解正比例意义的情景。

(二)学情分析

学生在学习乘法的时,已经初步接触了正比例的变化规律,在六年级上册已经学习了比的意义、比的化简与比的应用等。学生最容易掌握的是判断有具体数据的两个量是否成正比例,最难掌握的是离开具体数据,判断两个量是否成正比例。

(三)说教学目标与重难点:

根据以上分析,我确定本节课的教学目标如下:

1、结合实例认识正比例。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

3、利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。本着在新课程标准,在吃透教材的基础上,我确定了以下教学重点和难点 为了讲清教材的重难点,使学生能够达到本节课设定的教学目标,我再从学法和教法上谈谈。

二、说学法

本节课的教学本着“让学生自主探索”的原则,引导学生,在独立思考的基础上,学会小组合作交流。教学中给学生提供丰富的情景,让学生通过具体问题,具体情境认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生通过观察、比较、分析、归纳等教学活动,自主发现正比例的变化规律,理解正比例的意义。

三、说教法

本节课我运用的教学方法主要有:设疑诱导法、操作发现法和自学讨论法。

四、说教学过程

我们知道“学生是学习的主人,是知识的主动建构者,而教师则是学生学习的指导者,帮助者??”秉着这样的指导思想,整个设计力求体现“以学生发展为本”的教育理念,具体设计如下:

(一)复习导入

让学生举例说说什么是两种相关联的量。这样设计,是为了激发学生学习的兴趣,较好地唤醒学生已有的知识经验,找到新旧知识的结合点。同时也为了引导学生学会观察思考,发现内在的规律。

(二)自主建构

通过具体问题认识成正比例的量,发现正比例量的特征,并能正确判断正比例的量是本节课的中心任务,为了突出重点,突破难点,发挥学生的主体作用,我在教学中安排了三次感知、体验正比例的活动:

(1)在比较中继续感受成正比例量的特征

在这一环节,我展示了正方形的边长与周长,边长与面积的变化情况图表,请同学们完成表格,并观察其变化规律。

像这样同时出现正面与反面的例子,是为了让学生在比较中把握正比例量的本质特征。引入图像进行比较,是为了让学生对正比例的特征有更形象地认识,在头脑中形成更丰富的表象,达到数形结合,从而使学生真正建构正比例的意义。

(2)从正面初步感受, 成正比例量的特征

在这一环节中,我出示两组生活中成正比例的量,让同学们观察、比较,并发现其变化规律。

这样设计是为了让学生模仿前面找规律的方法,自主发现正比例量的特征。

(3)尝试归纳正比例的意义。

最后让学生在前面充分感知的基础上,尝试归纳正比例的意义,从而真正建构正比例的意义。

(三)分层提高

练习的设计力求体现多样性、层次性和发散性。在这一练习中,正比例的量不止一组,这样有利于培养学生的发散性思维。

(四)小结提升

让学生谈谈这节课的收获。主要是借助板书,让学生对新知识进行一次全面的回顾梳理,内化过程,培养学生总结概括能力!

(五)拓展延伸

出示两道拓展题,让学生将新知识的学习与巩固由课内延伸到课外。

对于本节课我就先说到这里,由于课堂上存在着许多不确定的因素,部分环节可能会稍作改动,另外,本节课在教学设计和具体环节的安排上,可能还存在着不足的地方,恳请各位领导和老师给予批评指正,谢谢!

解比例课件(篇9)

2、会根据比例的性质或比例的意义正确地解比例。

3、培养学生认真书写和计算的习惯。

过程与方法:

1、经历解比例的过程,体验知识之间的内容在联系和广泛应用,情感与价值观。

2、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

突破方法:

引导学生小组合作探究、交流,掌握解比例的根据。

1、师:同学们,我们已经学习了比例的一些知识,谁来说一说上节课我们学习了哪些比例的知识?(比例的意义,比例的基本性质)

2、出示:应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。

3、利用比例的一些知识,还可以帮助我们解决一些实际问题。出示比例:3:9=:15

师:这个比例中的两个外项和两个内项分别是多少?

师:你能利用比例的知识求出这个未知的.内项吗?可以根据比例的意义:比值相等的两个比可以组成比例。

因为3:9=1/3,想():15=1/3(5比15等于1/3);还可以根据比例的基本性质“两个内项之积等于两个外项之积”,求未知项。

师:像这样,求比例中未知的项,叫做解比例。(课件出示)。今天这节课就利用比例的有关知识解比例。(板书课题)

1、出示埃菲尔铁塔情境图。这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道。你们能帮帮他们吗?那我们先来看看这道题。

2、出示例题,教学例2。学生读题。

师:1:10是谁与谁的比?教师随学生的回答板书:埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10。

师:题中还告诉了我们一个什么条件?(埃菲尔铁塔的高度是320米。)

师:这样在这组比例的四个项中,我们知道其中的几个项?还有几个项不知道?(知道其中的三个项,还有一个项不知道。)

师:不知道这个项,我们把它叫做未知项。(在板书下面加上“未知项”三个字)

师:像这样知道比例中的任何三项,我们就可以求出这个比例中的另外一个未知项。怎样根据这个比例中的三项来求另外一个未知项呢?这就要用到我们前面学习的比例的基本性质。我们把埃菲尔铁塔模型的高度设为x米。可以写成一个比例,谁来说说看?板书:

师:用比例的基本性质可以把这个比例改写成一个什么样的等式呢?谁上来做做?为什么可以写成这样的等式呢?引导学生讨论后回答:这是应用了比例的基本性质,把上面的比例写成两个外项的积等于两个内项的积的等式。

师:对了,把上面的比例改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,不但把比例改写成了等式,这个等式还是一个什么样的等式呀?(含有未知数的等式。)

师:我们知道这样含有未知数的等式,叫做——方程。同学们会解方程吗?把这个方程解出来。在全班学生独立解答的同时,抽一个学生在黑板上解答。

师:这样我们就知道这个未知项是多少呀?(32)对了,这座埃菲尔铁塔模型的高度是32米。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是不是能成比例。)或比例的基本性质来检验。

3、巩固例2练习。

(1)出示练习题p37第8题。

(2)学生独立完成,二名学生板演讲解分析。

(3)小结:说一说你是怎样解比例。(解比例可以根据比例的基本性质把比例转化成方程,然后用解方程的方法求出未知数X)

(1)谈话引导学生理解例3,这个比例形式上与例2有什么不同?(这个比例是分数形式)

(2)解这种比例时,要注意些什么呢?(找出比例的外项、内项),让学生指出这个比例的外项、内项。

(3)学生独立练习,求出未知项。

(4)同学间互相交流,发现问题及时解决。

(5)请一位学生上台板演完成例3。

5、指导学生梳理教材的知识点,完成p35“做一做”。

三、巩固练习。

1、课件出示基本练习和提高练习,学生独立完成,指名板演。

四、本课小结。

这节课主要学习了什么内容?什么叫解比例?怎样解比例?(先依据比例的基本性质,把比例转化为方程,再解方程求解。)

五、布置作业。

p37第7题、p38第10题 。

解比例课件(篇10)

教学目标:

1、使学生理解比的意义和性质,掌握 求比值和化简比的方法。

2、理解按比例分配的意义,会解答按比例分配应用题。

3、理解比例的意义和性质,掌握解比例的方法。

4、使学生理解比例尺的意义,会求平面图的比例尺或根据比例尺求图上距离、实际距离。

5、理解正比例和反比例的意义,掌握判断两种量是否成正比例活泛比例的方法,会解答最基本的正比例、反比例应用题。

2、正比例和反比例的意义。

教学重点:理解比的意义并能正确写出笔,直到比与除法、分数之间的关系。

我们班男生4人,女生12人,女生人数是男生人数的几倍?男生是女生的几分之几?

1、男生是女生的几分之几? 4÷12,可以说成男生和女生人数的比是4比12。

2、女生是男生的几倍?12÷4,可以说成女生和男生的比是12比4。

强调谁和谁比。试着把同学们自己说的关系用比来表示。

1、把下面各比用分数表示出来。

2、满载抗洪救灾物资的货车3小时行270千米,汽车5小时行200千米,你能说出几个比吗?

1、什么叫比?

3、小组交流(1)这些比的前项和后项是怎么变化的?

提问:你们说出几个比来?要求说得和别人的不一样。

师:刚才打家举的例子,有的不是最简单的整数比,你能化简比吗?

1、 小组学习:

1、满载救灾物资的货车3小时行270千米,汽车5小时行200千米,你能说出几个比来吗?并化简比、求出比值。

2、甲拖拉机3.5天耕地23.1公顷,乙拖拉机2.25天耕地1.7公顷。

写出甲、乙两台拖拉机耕地时间的最简单的整数比。

写出甲、乙俩台拖拉机工作效率的最简单的整数比。

18∶63 0.75∶0.25 9.9∶1.21 3.6∶4.8

2.使学生能应用比例尺的知识求平面图的比例尺,以及根据比例尺求图上距离和实际距离。

3.培养学生分析问题、解决问题的能力和创新能力。

教学过程:

4. 导入新课:刚才我们复习了有关比的知识,这些知识与我们的实际生活有什么联系呢?我们就一起来研究有关比的知识在实际生活中的应用。

二、探索、学习新知识:

1、 学校要举行运动会,操场长80米,宽40米,你能按实际距离画在16厘米的正方形纸上吗?该怎么办?

2、在平面图上,可以用多长来表示实际的长和宽呢?

3、小组设计,看看长和宽都缩小了多少倍?

4、讨论什么叫比例尺?

这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的比,叫比例尺。

齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。

三 、巩固练习:

(1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。

(2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。

(3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?

(4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?

(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?

上述四题分层练习,后讲评。

比较(3)、(4)两题的比例尺有什么不同?

教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。

2、培养学生分析问题、解决问题的能力和创新能力。

教学重点:能够根据比例尺求实际距离或图上距离的方法。

1、什么叫比例尺?

2、求比例尺?

二、运用比例尺解决问题:

根据比例尺的关系式,求实际距离。

(1).出示例2 在比例尺是130000000的地图上,量得上海到北京的距离是3.5厘米。上海到北京的实际距离大约是多少千米?

105000000厘米=1050千米。

1. 1. 在一幅比例尺是16000000的地图上,量得一座城市和海港的距离是8厘米。这个城市离海港有多少千米?

2. 2. 在150000000的地图上,量得一条铁路从起点到终点的长是2.8厘米。这条铁路长多少千米?

先让学生独立解答,后讲述。

四、回顾总结:

今天你又有那些收获?已知图上距离和比例尺求实际距离时,应注意那些事项?

105000000厘米=1050千米。

教学目标:使学生理解按比分配的意义,使学生掌握解答方法〉

1、 同学们,你们分过东西吗?如果请你们帮助老师分一分包里的东西,大家像一项都要知道什么?

2、 下面分一分我们学校的这块卫生区,学校卫生区有200平方米,平均分给5个班,每隔半分得多少平方米?

(1) 如果六年级负责三份,分多少平方米?

(2) 五年级负责两份,分多少平方米?

3、 变形:如果我们把这块卫生区看作单位1,这道题可以这样叙述:学校有一块平方米的卫生区六年级负责其中的3/5,五年级负责2/5.个负责多少平方米?

学校有一块200平方米的卫生区,分给六年级和五年级,他们负责的面积的比是3:2,两个班各负责多少平方米?

(2) 把比转化成分数。

每个组各有多少人?

2、讨论:甲乙丙三个修路队和修一条长200千米的公路,已知甲修了50千米,乙丙两队的比是2:3,丙队修多少米?

3、选择:长方形州长14米,长与宽的比是6:1长与宽各多少米?

教学目标:深化对按比分应用题地掌握,能够熟练解答应用题。培养学生认真审题的良好习惯。

1、请你说说上节课我们所学内容的解题思路。

2、口答:小兰家养了24 只.......,公.......和母.......只数的的比是1:5,

公.......和母.......各有多少只?

(一)、出示:建筑工地上混凝土使用沙子、水泥和石子配制而成的。沙子、水泥、石子重量的比是3:2:5。要配制12吨这样的混凝土,需要沙子、水泥、石子个多少吨?

希望小学把508本图书按照六年级三个班的人数分配分配给每个班,一班有40,二班有42人,三班有45人,三个班各得图书多少本?

1、一个长方体,长、宽、高的比是3:2:1。棱长总和是48 厘米,这个厂房体积是多少立方厘米?

2、蓝田纺织厂把库存原料按照2:4:3分配给甲、乙、丙三个车间,已知甲车间得到54吨原料,这个厂一共有原料多少吨?两车间分到原料多少吨?

例2 建筑工地上的混凝土使用沙子、水泥、石子配制而成的。沙子、水泥、石子重量的比是3:2:5。要配制12吨这样的混凝土,需要沙子、水泥、石子个多少吨?

教学目标:在已有的知识基础上理解比例的意义。知道什么是比例。

1、求下面各比得比值你发现了什么?

学生计算,讨论其规律。

3、理解比例的意义(像这样的式子我们把他叫比例)。

表示两个比相等的式子叫做比例。

反比例课件


教案课件是我们教师工作的重要组成部分,现在又到了编写课件的时候了。教案是有效管理知识传授过程的工具。这个名为"反比例课件"的教案是由工作总结之家小编精心创作的,希望您会喜欢它。感谢您阅读这篇文章,希望它能给您带来愉悦!

反比例课件【篇1】

反比例函数是高中数学中的一个重要概念,它的图像和性质非常值得学生深入研究。本文将从图像和性质两个方面,对反比例函数进行详细的讲解和解释,帮助学生深入理解和掌握反比例函数的特点和应用。

一、反比例函数的图像

反比例函数的图像是一条反比例曲线,它可以用函数式表示为y=k/x,其中k为正常数。这条曲线具有以下几个特点:

1.图像的形状

反比例函数的图像是一条开口向右下方的双曲线,它没有定义域和值域,因为它在x轴和y轴上都不存在渐近线。

2.渐近线

反比例函数的图像存在两条渐近线,它们是x轴和y轴。

3.对称轴

反比例函数的图像在第一象限和第三象限分别关于y=x对称,因此反比例函数具有对称性。

二、反比例函数的性质

除了图像的特点,反比例函数还具有以下几个性质:

1.定义域和值域

反比例函数的定义域为除了0以外的所有实数,它的值域也为除了0以外的所有实数。

2.单调性

反比例函数在其定义域上是单调递减的。

3.零点和极值

反比例函数没有零点和极值,因为它的图像没有交点和最大值或最小值。

4.特殊点

反比例函数的一个特殊点是原点(0,0),因为当x或y等于0时,函数值不存在。

三、反比例函数的应用

反比例函数在实际问题中的应用非常广泛,例如:

1.速度和时间的关系。当一辆汽车行驶的速度越快,行驶一定距离所需的时间就会越短,因此速度和时间之间的关系可以用反比例函数来表示。

2.人口和资源的关系。当一个地区的人口增加,对资源的需求也会增加,因此人口和资源之间的关系可以用反比例函数来表示。

3.光线的反射。当光线在一定角度入射到平面上时,反射角度与入射角度成反比例关系,因此可以用反比例函数来表示。

总之,反比例函数是一个非常重要的概念,它的图像和性质与许多实际问题密切相关。学生应该通过深入研究和实践,在应用反比例函数解决实际问题中提高自己的数学素养和解决问题的能力。

反比例课件【篇2】

教学内容

反比例。(教材第47页例2)。

教学目标

1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。

2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

重点难点

引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。

教学准备

投影仪。

复习导入

1.让学生说说什么是正比例,然后用投影出示下面的题。

下面各题中哪两种量成正比例?为什么?

(1)每公顷产量一定,总产量和公顷数。

(2)一袋大米的重量一定,吃了的和剩下的。

(3)修房屋时,粉刷的面积和所需涂料的数量。

2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?

教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。

新课讲授

1.教学例2。

创设情境。

教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?

出示教材第47页例2的情境图和表格。

请学生认真观察表中数据的变化情况,组织学生分小组讨论:

(1)水的高度和底面积变化有关系吗?

(2)水的高度是怎样随着底面积变化的?

(3)水的高度和底面积的变化有什么规律?

学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。

教师板书配合说明这一规律:

30×10=20×15=15×20=……=300

教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。

2.归纳反比例的意义。

组织学生小组内讨论:反比例的意义是什么?

学生小组内交流,指名汇报。

教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

3.用字母表示。

如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?

学生探讨后得出结果。

x×y=k(一定)

4.师:生活中还有哪些成反比例的量?

在教师的引导下,学生举例说明。如:

(1)大米的质量一定,每袋质量和袋数成反比例。

(2)教室地板面积一定,每块地砖的面积和块数成反比例。

(3)长方形的面积一定,长和宽成反比例。

5.组织学生将例1与例2进行比较,小组内讨论:

正比例与反比例的相同点和不同点有哪些?

学生交流、汇报后,引导学生归纳:

相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。

不同点:正比例关系中比值一定,反比例关系中乘积一定。

6.你还有什么疑问

?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。

反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。

课堂作业

1.教材第48页的“做一做”。

2.教材第51页第9、10题。

答案:1.(1)每天运的吨数和所需的天数两种量,它们是相关联的量。

(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。

(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。

2.第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。

第10题:5010012

课堂小结

说一说成反比例关系的量的变化特征。

课后作业

1.完成练习册中本课时的练习。

2.教材51~52页第8、14题。

答案:

2.第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。

第14题:(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。

(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。

解答:从图像中可以知道斑马10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。

从图像中可以知道长颈鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。

(3)斑马跑得快。

第3课时反比例

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

用x和y表示两种相关联的量,x和y成反比例关系用字母表示为×y=k(一定)

正比例与反比例的相同点和不同点:

相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。

反比例课件【篇3】

第一课时

教学设计思想

本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的'应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

教学目标

知识与技能

1.能灵活列反比例函数表达式解决一些实际问题。

2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。

过程与方法

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

情感态度与价值观

体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重难点

重点:掌握从实际问题中建构反比例函数模型。

难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教学方法

启发引导、合作探究

教学媒体

课件

教学过程设计

(一)创设问题情境,引入新课

[师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

[生]是为了应用。

[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。

反比例课件【篇4】

理解反比例函数的意义;根据已知条件确定反比例函数的解析式。

学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际问题;发展学生的抽象思维能力,提高数学化意识。

经历反比例函数的形成过程,体会数学学习的重要性,提高学生学习数学的兴趣;在学习过程中进行分组讨论,培养学生的合作交流意识和探索精神,体验学习的快乐与成就感。

理解反比例函数的意义;根据已知条件确定反比例函数的解析式。

体育课上测试了百米赛跑成绩,那么时间t与平均速度v的关系是怎样的?你能用含有t的代数式表示v吗?

我们知道,矩形的面积s与长a宽b之间的关系为S=ab,那么,当S=245时,长a宽b可用怎样的函数关系式表示?

下列问题中,变量间的`对应关系可用怎样的函数关系式表示?

(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化。

(2)某住宅小区要种植一个面积为1000O的矩形草坪,草坪的长y(单位m)随宽x(单位m)的变化而变化。

(3)已知某市的总面积为1.68×10平方千米,人均占有的土地面积s(单位:平方千米/人)会随全市人口n(单位:人)的变化而变化。

1.这些关系式都体现了函数关系,它们是我们曾学习过的正比例函数或一次函数吗?

2.这些函数关系式与正比例函数、一次函数有何不同?

3.这些函数关系式有什么共同的特征?

4.各关系式中两变量之间有什么关系?

5.你能归纳出反比例函数的概念吗?

通过回答以上问题,师生共同总结反比例函数的概念。

1.反比例函数关系式中有几个变量?

2.变量之间存在什么关系?

3.反比例函数还有其他形式吗?若有请指出。

4.反比例函数中,变量x、y和常数k有什么具体要求?为什么?

1.下列函数中哪些是反比例函数?请指出反比例函数中的k值。

2.已知y是x的反比例函数,且当x=2时,y=6。

(1)写出y与x的函数关系式。

(2)求当x=4时,y的值。

3.当x为何值时函数y=x-2a-4 是反比例函数?

4.已知函数y= y1+y2, 与x成正比例, y2与x成反比例,且当x=1时,y=4;当x=2时,y=5。

(1)求y与x的函数关系式。

1.通过本节课的学习你对反比例函数有怎样的认识?

2.反比例函数与正比例函数的区别有哪些?

教材中本节习题17.1第1、2、4题。

反比例课件【篇5】

反比例函数是高中数学中的一个重要概念,其图像和性质的学习对于建立数学基础、提高计算能力和解决实际问题具有重要意义。本篇文章将从反比例函数的定义、图像、性质和实际应用等方面进行探讨。

一、反比例函数的定义

反比例函数定义为 y = k/x,其中 k 为常数,x ≠ 0。其特点为 x 越大,y 越小,反之亦然。该函数图像为一条经过原点且对称于 y = x 的直线。

二、反比例函数的图像

反比例函数 y = k/x 的图像可以通过绘制函数的表格或者使用计算机绘图软件得到。下图展示了 y = 2/x 的图像:

反比例函数的图像通常是沿着对称轴 y = x 对称的,且它们远离原点趋近于零。在 x 轴的正半轴和 y 轴的正半轴中,其图像切线的斜率不断变化。在 x 轴和 y 轴负半轴中,其图像切线的斜率均为负数,靠近原点时逐渐变大。

三、反比例函数的性质

1. 定义域:x ≠ 0,值域:y ≠ 0。

2. 性质1:垂直渐近线为 y = 0。

3. 性质2:当 x > 0 时,函数单调递减;当 x

4. 性质3:函数与坐标轴交点分别为( k, 0 )和( 0, k )。

5. 性质4:当 x1x2 = k 时,有 y1y2 = k 成立。

6. 性质5:当 x1x2 = k 且 y1y2 = k 时,有 y1 + y2 = y3 + y4,其中 (x1,y1),(x2,y2) 分别是曲线上两个点,而 (x1,y3),(x2,y4) 分别是 x1x2 = k 的两根。

四、反比例函数的实际应用

反比例函数主要应用于实际问题中的比例关系,用于表示两个量的关系,例如工作时间和完成工作量、车速和行驶距离等。

此外,反比例函数在物理学、地理学和经济学等领域也有广泛应用。例如,在物理学中,当质量和速度发生变化时,它们之间的关系可以用反比例函数表示。在地理学中,人口密度和土地面积之间的关系也可以用反比例函数描述。在经济学中,货币的购买力和物价之间的关系也可以用反比例函数表示。

总之,反比例函数是高中数学的一项重要内容,是掌握数学基础和解决实际问题的必备工具。以上为反比例函数的图像和性质课件,希望能对您的学习和了解提供帮助。

反比例课件【篇6】

教学内容

教科书第14~16页的例4~例6以及相应的“做一做”,练习三的第4~7题。

教学目的

1、使学生通过具体问题认识成反比例的量,理解反比例的意义,能判断两种量是否成反比例关系,能找出生活中成反比例量的实例,并进行交流。

2、引导学生运用前面学习成正比例的量的学习方法学习反比例,从中感受学习方法的普遍适用性,培养学生的观察能力、推理能力、归纳能力和灵活运用知识的能力。

教具、学具准备

视频展示台。

教学过程

一、复习引入

1、怎样判断两种量是不是成正比例?

2、写出正比例关系式。

3、判断下面每题中的两种量是不是成正比例,并说明理由。

(1)每本练习本的张数一定,装订练习本纸的总张数和装订的本数。

(2)每天播种的公顷数一定,播种的总公顷数与播种的天数。

(3)工作总量一定,工作效率和工作时间。

4、回想一下,我们怎样学习成正比例的量。

引导学生归纳研究成正比例的量的学习步骤和方法是:先把两种量的变化情况列成表,再观察、讨论表中的变化规律,归纳变化规律,并用关系式表示。学生回答时,教师随学生的回答板书:列表──观察──讨论──归纳──用关系式表示。

二、导入新课

教师:这节课我们用同样的学习方法来研究比例的另外一个规律。

三、进行新课

1、教学例4。

教师:同学们刚才在解答准备题时,知道“工作总量一定,工作效率和工作时间”不成正比例关系,那么,工作效率和工作时间成不成比例?如果成比例,又成什么比例呢?为了弄清这些问题,我们可以用前面掌握的学习方法,先列个表来分析。

在视频展示台上出示例4:华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表:

工效(个)102030405060…

时间(时)603020151210…

教师:请同学们观察这个表,先独立思考后再讨论、交流、回答以下问题:(在视频展示台上展示。)

(1)表中有哪两种量?

(2)这两种量是怎样变化的?

(3)还可以从表中发现哪些规律?

学生讨论后,先抽问第1问和第2问。引导学生说出表中有工作效率和工作时间这两种量,这两种量的变化规律是,工作效率不断扩大,所需的工作时间反而不断地缩小。

教师:为什么会有这种变化规律呢?

引导学生结合生活实例,说因为工作总量一定,每小时做的工作越多,所用的时间越少。例如要种8棵树,如果每小时种1棵,要8小时;每小时种4棵,只要2小时;如果每小时种8棵呢,只要1小时就够了。

教师:尽管一个量在扩大,另一个量反而缩小,但是每小时加工的个数是随所需的加工时间的变化而变化的,所以,每小时加工的个数与所需的加工时间仍然是相关联的两种量。你们还发现些什么规律吗?

学生任意说表中的规律。如每小时加工数从10扩大到40个,扩大4倍,所需的加工时间反而从60小时缩短到15小时,缩小了4倍;每小时加工数从60个缩小到30个,缩小了2倍,所需的加工时间反而从10小时扩大到20小时,扩大了2倍。

教师:还能发现哪些规律呢?比如说用每竖列的两个数相乘,看看它们的乘积是否相等,想想这个乘积表示什么?

引导学生找出每竖列的两个数的乘积相等的规律。如:

10×60=600,20×30=600,40×15=600,…

这个600实际上就是这批零件的总数。

教师:能写出关系式吗?

引导学生写出:每小时加工数×加工时间=零件总数(一定)

2、教学例5。

教师:再来研究一个问题。

在视频展示台上出示例5:用600张纸装订成同样的练习本,每本的张数和装订的本数有什么关系呢?请同学们先填写下表:

每本的张数152025304060…

装订的本数40…

教师:同学们先填写好表中的数据后,再用前面的分析方法,独立分析表中的数量关系,然后同桌进行交流。

学生分析后指导学生归纳:

(1)表中每本的张数和装订的本数是相关联的两种量,装订的本数随着每本的张数的变化而变化;

(2)每本的张数扩大,装订的本数反而缩小;每本的张数缩小,装订的本数反而扩大;

(3)它们之间的关系可以写成:每本的张数×装订的本数=纸的总张数(一定)。

教师:我们上面研究了两个问题,下面我们一起来归纳这两个问题的一些共同特点。

引导学生归纳出这两个问题中都有两种相关联的量,一种量扩大,另一种量反而缩小,这两种量中相对应的两个数的积一定。

教师:凡是符合以上规律的两种量,我们就把它叫做成反比例的量。(板书课题)它们之间的关系就是反比例关系。和正比例一样,成反比例的量也可以用式子来表示。如果用x和y表示两种相关联的量,用k表示它们的乘积(一定),怎样用式子来表示反比例的关系式呢?

引导学生归纳出:x×y=k(一定)。

教师:请同学们相互说一说生活中还有哪些是成反比例的量?

学生先相互说,然后再说给全班同学听。

3、教学例6。

教师:请同学们用上面所学的知识判断一下,在播种中如果播种的总公顷数一定,每天播种的.公顷数和要用的天数是不是成反比例?为什么?

学生先独立分析,然后再交流讨论,最后抽学生汇报。引导学生分析出每天播种的公顷数和要用的天数是两种相关联的量,它们与总公顷数有“每天播种的公顷数×天数=总公顷数”的关系,由于总公顷数一定,所以每天播种的公顷数和要用的天数成反比例。

指导学生完成第16页“做一做”。

四、巩固练习

指导学生完成练习三第4~7题。

五、课堂小结

教师:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?

学生小结后教师再对全课知识进行归纳,学有余力的学生,可以在教师的指导下讨论完成练习三的第8*题。

板书设计

成反比例的量学习的基本步骤和方法:列表──观察──讨论──归纳──用关系式表示。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

X×Y=K(一定)

例4:例5:每小时加工数×加工时间=零件

每本的张数×装订的本数=纸的总数(一定)总张数(一定)

正比例课件(集合9篇)


资料一般指可供参考作为根据的材料。在我们的工作中,我们经常会需要一些资料。有了资料才能更好的在接下来的工作轻装上阵!你是否收藏了一些有用的资料内容呢?小编特地为大家精心收集和整理了“正比例课件(集合9篇)”,欢迎阅读,希望你能够喜欢并分享!

正比例课件 篇1

教学目标:

1、使学生理解什么是相关联的量。

2、掌握正比例的意义及字母表达式。

3、学会判断两个量是否成正比例关系。

生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。

生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)

生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。

这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”

生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。

师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?

生:答对一题得10分,答对两题得20分,答对三题得30分……

生:答对的题目与最后的成绩,它们是两个相关联的量。

生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。

生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。

师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。

师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?

(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)

师:刚才这位同学在算出比值的时候,你们发现了什么?

师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)

1、表中有( )和( )两种量。

2、路程是怎样随着时间的变化而变化的?

3、任意写出三个相对应的路程和时间的比,并算出它们的比值。

4、比值实际上表示( ),请用式子表示它们的关系。

师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?

(结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)

反思:

从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。

以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。

正比例课件 篇2

1、使学生理解正比例的意义,会正确判断成正比例的量。

2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

1、揭题:今天这节课,我们一起学习成正比例的量。板书:成正比例的量

2、通过自学,你能说说什么叫做成正比例的量?

3、你是怎样理解成正比例的量的含义的?

4、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

在教师的引导下,学生会举出一些简单的例子。

(2)说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

(3)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

1、学生独立完成例2后反馈交流。

(1)从图中你发现了什么?

这些点都在同一条直线上。

(2)看图回答问题。

①如果杯中水的高度是7㎝,那么水的体积是多少?

②体积是225㎝3的水,杯里水面高度是多少?

③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

(3)你还能提出什么问题?有什么体会?

2、做一做。

过程要求:

(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

(2)表中的路程和时间成正比例吗?为什么?

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120KM大约要用多少时间?

(5)你还能提出什么问题?

3、独立完成第44页练习七第1、2题。

4、判断并说明理由。

(1)圆的周长和直径成正比例。

(2)圆的周长和半径成正比例。

(3)圆的面积和半径成正比例。

正比例课件 篇3

教学目标

1、使学生理解正比例的意义.

2、能根据正比例的意义判断两种量是不是成正比例.

3、培养学生的抽象概括能力和分析判断能力.

4、使学生理解正比例的意义.

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.

教学过程

一、复习

出示下面的题目,让学生回答..已知路程和时间,怎样求速度?板书: =速度

2.已知总价和数量,怎样求单价?板书:=单价

3.已知工作总量和工作时间,怎样求工作效率?板书:=工作效率

4.已知总产量和公顷数,怎样求公顷产量?板书:=公顷产量

二、导入新课

教师:这是我们过去学过的一些常见的数量关系.这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系.(板书课题:正比例的意义.)

三、新课

1、教学例1.

用小黑板出示例1:一列火车行驶的时间和所行的路程如下表;

时间(时) 1 2 3 4 5 6 7 8

路程(千米) 90 180 270 360 450 540 630 720

提问:

表中有哪几种量?

当时间是1小时时,路程是多少?当时间是2小时时,路程又是多少?

这说明时间这种量变化了,路程这种量怎么样了?(也变化了.)

教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量(板书:两种相关联的量).

时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?

让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值.教师板书出来:=90,=90,=90,=90,

让学生观察这些比和它们的比值,看有什么规律.教师板书:相对应的两个数的比值(也就是商)一定.

比值90,实际上是火车的什么?你能将这些式子所表示的意义写成一个关系式吗?板书:=速度(一定)

教师小结:通过刚才的观察和分析,我们知道路程和时间是两种什么样的量?(两种相关联的量.)路程和时间这两种量的变化规律是什么呢?〔路程和时间的比的比值(速度)总是一定的.〕

2、教学例2.

(1)表中有哪两种量?

(2)米数扩大,总价怎样?米数缩小,总价怎样?

(3)相对应的总价和米数的比各是多少?比值是多少?

然后进一步问:

这个比值实际上是什么?你能用一个关系式表示它们的关系吗?板书:=单价(一定)

教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价随着扩大;米数缩小,总价也随着缩小.它们扩大、缩小的规律是:总价和米数的比的比值总是一定的.

3、抽象概括正比例的意义.

教师:请同学们比较一下刚才这两个例题,回答下面的问题:

(1)都有几种量?

(2)这两种量有没有关系?

(3)这两种量的比值都是怎样的?

教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定.像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系.

最后教师提出:如果我们用字母x,y表示两种相关联的量,用字母k表示它们的比值,你能将正比例关系用字母表示出来吗?教师板书

4、教学例3.

出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

教师引导:

面粉的总重量和袋数是不是相关联的量?

面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否一定?板书:=每袋面粉的重量(一定)

已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例.

5、巩固练习.

让学生试做第13页做一做中的题目.其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以

四、课堂练习

正比例课件 篇4

各位领导、各位老师:

大家好。

今天我说课的题目是六年级的《正比例的意义》一课。我将从教学背景分析、我的思考、教学目标、教学重难点、教学过程和教学特色六个方面来开展。

一、教学背景分析

1、教材分析

首先是这节课的教学背景,正比例的意义是小学数学“数与代数”当中重要的内容之一,也是学生系统学习函数的开始。提起函数,可以简单的说:函数是一种以运动和变化的观点来反映两种数量之间相互联系的一种数学模型。而正比例的意义,正比例关系也是当中最简单最线性的关系,其实在学生以往的学习过程当中,比如说探索规律,还有对数量关系、运算公式的学习,包括字母表示数以及统计图、统计表的认识,以及比和比例等内容,都为学生学习正比例的意义奠定了一定的知识基础。同时,正比例意义的学习将直接为反比例意义的学习提供研修方法和研修模式,又为后续的解决实际问题,乃至于将在初中系统的学习函数做好了知识和方法的准备。

2、学情分析

刚刚谈到了学生已有的知识经验,另外从学生的学习情况来考虑,在课前访谈中,通过学生对于涉及的两种相变化的量思考的时候,还能够结合自己充分的生活经验,举出了大量实例。比如在访谈中,当涉及到“两种相关联的量”这个话题的时候,有的孩子就说:大树生长的高度跟它生长的年份相关系,还有的说一天当中气温是随着时间的变化而发生变化的等等。这些展示出了孩子对于日常生活中那种变化现象的关注和探究的兴趣。但是不可否认的是从学生面对正比例的学习角度来看,这方面的学习还是存在一定的认知困难的,因为从研究数量关系的角度来看,应该说孩子对以往的数量关系,包括一些运算公式有了比较清晰的了解,比如说路程、时间、速度这组常见的数量关系,应该说孩子比较熟悉,但是还仅仅停留在对具体问题的解决上,而正比例的意义是要从一种运动和变化的观点去理解数量间的关系,要通过观察、分析两种数量之间的变化情况,变化规律,进而达到对两个变量关系的进一步理解。因此说学生对数量关系的认识和思考将从以往的静态过渡到今天的动态观察分析,乃至于抽象概括上来。这种研究问题的角度,学生相对来说还是比较陌生的。

二、我的思考

基于以上的了解,我进行了这样的思考。关于正比例意义的学习,是仅仅让学生记住描述正比例意义的一段文字,还是说仅仅让学生能够记住关于正比例的关系式,或者说能利用正比例意义,利用关系式进行判断等等。能做到这些就够了吗?经过思考,不难发现,事实上这些仅仅是基本知识、基本技能的层面,学生学习正比例的意义,应该在系统地认识所谓函数的这样一个大的背景下来展开,其更深远的价值在于学生以一种运动和变化的观点,变化的眼光来看待生活中的现象,应该在变化当中寻求对应关系,在对应中确定事物间的联系,从而实现从另外一个角度,或者说与以往观察的角度不同的理解,来促进学生进一步的理解常见的数量关系。基于这一部分内容的抽象性,也应该在教学过程中适当的采取文字、表格、关系式和图像等多种形式来促进学生的理解,从而有意义的建构正比例的意义。

三、教学目标

基于以上的思考,我制定了本课的教学目标如下:

1、在具体情境中认识成正比例的量,理解正比例的意义,并能结合生活实例进行判断。

2、在借助多种形式理解正比例意义的过程中,培养学生的观察、比较和抽象概括能力。

3、进一步体会数学与现实的密切联系,渗透数形结合思想和初步的函数思想。

四、教学重难点

本课的教学重点是理解正比例的意义,掌握正比例关系的判断方法。教学难点比较突出,通过多种形式的表征来丰富学生的认识,从而达到深入理解正比例的意义。

五、教学过程

第五方面是教学过程,我将从以下四个方面来进行。一是情境引入,初步感知,二是联系实际,建立意义,三是巩固练习,促进理解,四是质疑总结,拓展延伸。

1、情境引入,初步感知

首先是课堂的起始阶段,从情境引入,初步引发学生对两种相关联量的感知,出示这样一个实际的调查表,是一个男孩的体重变化情况,从出生到七周岁,当然这个表格的出示可以用动态的形式来呈现,随着出生后年龄的变化,而逐个出示与之相对应体重的具体情况。当观察表格之后,明确引发学生思考:通过观察这个表格,你有什么发现?引发孩子具体观察里边的数据,当然这个过程学生很快就会意识到,这个小男孩的体重是随着他年龄的变化而变化的。从而产生两种相互依赖的相关联的量这样一层含义。而后是引导学生继续结合自己的日常生活举例,比如说刚才所提到的课前调研到的:树木生长的高度与年份的问题,包括孩子一些感兴趣的话题,都可以借助这个机会引导学生充分举例,老师适时的呈现关于这个树木生长的话题,以曲线统计图的形式来丰富学生的理解,进一步提高学生对于图像当中所反映问题的初步思考。

刚才的两个情境,其实并没有直接进入典型的正比例关系这样一个话题,而是从学生已有的生活经验出发,引导学生明确地认识到:只要是一种量变化,引起另一种量发生变化,那么这两种量就是相关联的量,并且充分感知,大量实例证明两种相关联的量在我们现实世界中是广泛存在的。以上是课堂的第一个环节。

2、联系实际,建立意义

第二是联系实际,建立意义的过程。首先呈现的是两幅表格,第一个是关于老师步行回家的时间和路程的统计表,还是以动态的逐个逐列的呈现形式来进行,老师步行回家1分钟80米,2分钟140米,一直到8分钟提出明确的与之相对应的问题:8分钟行多少米?第二个表格是国庆时三军仪仗队通过天安门受阅区时间和路程的统计表,形式大致相同,但是观察两个表格,可以明确引发学生进一步思考,在完成表格填空的过程中,不难发现,都是关于步行时间和路程的统计表。为什么第一幅表格不能确定准确的与8分钟相对应的路程,而第二幅表格却通过推算、简单的思考,能够确定出准确的路程呢?

那么,通过具体的观察、讨论,学生们可以明确的意识到虽然时间和路程这两种相关联的量是在不断发生着变化,这一点不容置疑,但是仔细观察,两种量中相对应的数据,我们也可以明确的发现,三军仪仗队通过天安门受阅区的时候,他们所步行的速度是保持不变的,也就是能够算出准确的与8分钟相对应的路程。当然这个素材的选取也是经过一定思考的,比如相关的还有一些信息也可以藉此机会给学生提供,比如说还是关于天安门受阅区三军仪仗队的通过问题,还有相关的信息,比如说每步行进75厘米,一分钟116步,通过天安门整个受阅区911步,分秒不差这样一个奇迹,增强学生的民族自豪感,从中也可以结合丰富的信息积累更多的经验,包括可以进行以后的初步判断等等。以上是第一个表格的问题。

第二个问题呢,是想丰富学生的进一步感知的材料,准备以单价、数量、总价这组常用的数量关系来进行,大致情况是这样的:首先是以图像的形式呈现部分数据,一个是苹果的质量,一个是总价。1千克对应的是5元,2千克对应的是10元,3千克对应的是15元,这里突出的是以图像的形式呈现对应。在此基础上,可以直观的发现苹果的单价,并且可以利用学生获取的这样一些数据信息,引发学生进一步思考:买6千克苹果需要多少元呢?这里学生可以借助单价进行简单的计算,从而确定出与6千克对应的点的位置,其实孩子可以借助刚才三个点的发展变化趋势,来推测出与6千克相对应的点的位置。而后可以进一步借助图像增进学生的理解,也就是还可以购买不同质量的苹果,而且都能在这个图中找出与之相对应的价钱。无数多个点集合在一起,并通过连点成线,就更明确地发现了事物的变化趋势,从而以运动和变化过程中的观点去认识变与不变的内在规律。当然还可以涉及到更多的价钱,乃至于0千克的价钱,从而完善了学生对这条直线的一个明确的认识。当然这个过程也是进一步让学生理解到总价是随着数量的变化而变化的,苹果的单价始终保持不变,所关注的还是内在规律,这样就把数据信息和图像信息有机的结合在一起。

接下来为了实现从图像和表格的多种形式融合,将上述内容移植到表格当中去,从而初步实现图像和表格的进一步沟通。通过以上两个情境的具体材料,应该说学生对于正比例的意义已经有了一个初步的认识。

接下来的环节就是借助刚刚两个事例引导学生进行明确的对比和沟通,从而找到两个事例当中的共同点。当然孩子可以借助自己的理解,用文字的形式进行表达,老师也可以进一步丰富学生的认识,可以借助手势的形式来进行。比如说刚才所提到的两个事例当中,都涉及到两种相关联的量,一种量变化,另一种量也随着变化。具体来说是一种量扩大,另一种量也随之扩大(手势),一种量缩小的话,另一种量也随之缩小(手势)。同时,这两种量中相对应的两个数的比值是保持不变的。从而以文字和手势的形式明确正比例的意义。当然还要引导学生进一步关注以关系式的形式来进行总结概括。这样的情况下,通常都可以采用一个关系式来进行,刚才所涉及到的路程、时间和速度,总价、数量和单价都可以用字母的形式来明确概括,即y/x=k(一定)的形式。从而初步引导学生用多种形式完成对正比例意义的初步概括。

以上这个环节给孩子提供了熟悉的情境,通过观察、分析、对比和抽象概括的过程,努力地抓住了示例中两个量变化的基本特点,进而总结和概括出正比例的意义。

3、巩固练习,促进理解

课堂的第三大环节是巩固练习,促进理解。首先是利用表格的一个判断形式,表格中所涉及到的是关于总价随着单价的变化而发生变化,但是始终不变的是什么?是买3只笔的这样一个常量。这道练习题目的设计,努力克服掉了刚刚学生所形成的总价/数量=单价(一定)的思维定式,从而实现关注整个事情变化两种相关联量的理解,以及到底谁没有发生变化这样一个关注点,进一步促进学生理解,同时,这里还有一个训练表达的问题。

第二个练习是进一步丰富学生的判断经验,引导学生用连贯的、完整的话来进行分析和判断。是判断下面问题中的两种量是否成正比例关系,第①个练习很清晰,每分钟打字50个,请思考打字的总数和打字的时间是否成正比例关系。这道题的训练目的是引导孩子初步形成判断正比例的方法以及表达的步骤。当然学生也可以举出实例,具体的数据加以解释说明。第②个判断的题目是正方形的周长与边长。它的目的是在于引导学生关注周长与边长之间固定不变的四倍关系这个常量的思考,从而引导学生进一步引发判断时应该注意关注对定量的思考。第③个是一本书有200页,每天读20页,看过的页数和剩下的页数, 这里明显是总和一定,从而进一步引发学生思考,判断两种量是否成正比例关系,至关重要的是看他们两种量行对应的比值是否一定,才能下结论。第④个是借助函数图像的形式来丰富学生的判断。就是以图像的形式来判断大树的生长时间和生长的高度是否成比例关系。当然这里还可以通过计算去解决,也可以通过直观预测和推断来完成判断过程。到15年后,大树的高度是不再生长的,现在不能准确说它成正比例关系。

4、质疑总结,拓展延伸

课堂最后一个环节是质疑总结,拓展延伸。通过设计这样一个开放一点的题目来进行,就是观察图中信息,你有什么发现?

这里还是以图像形式来进行的,引出香蕉和苹果两种水果的单价与总价之间变化情况图像,引发学生思考:这里学生的发现应该是开放的,可以借助直观的图像找到相对应的价钱,比如说香蕉3千克是24元,苹果5千克是20元等等找到单价,计算单价。也可以通过描述发展变化的情况,变化的规律进行准确地判断,总价是随着数量的变化而变化的,是成正比例关系的。还可以从另外一个角度来思考,两种线,蓝颜色的线和红颜色的线倾斜的.角度是不一样的,从而初步渗透所谓的一次函数y=ks,k值的倾斜角度的感知和理解。以上是课堂的主体环节。

六、教学特色

如果从教学特色来看,有以下两点,一是关注知识系统抓本质,二是注重多种表达促理解。

以上只是基于已有的教学经验和对学生的初步了解所形成的教学设计,还需要进一步在教学实践中检验,也诚恳希望得到各位领导和老师的宝贵意见。我的说课就到这里,谢谢大家。

正比例课件 篇5

教学目标:

1 使学生理解什么是相关联的量。

2 掌握正比例的意义及字母表达式。

3 学会判断两个量是否成正比例关系。

教学过程:

一、导入

师(板书:关联):知道关联是什么意思吗?

生:指事物之间有联系。

生:也可以指事物之间相互影响。

师:对,关联就是指事物之间发生牵连和影响。

师:能举一些生活中相互关联的例子吗?

生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。

生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)

生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。

这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”

生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。

二、新授

师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?

师:从这个表格中。你还知道什么?

生:答对一题得10分,答对两题得20分,答对三题得30分……

师:表中有哪两个量?它们的关系怎样?

生:答对的题目与最后的成绩,它们是两个相关联的量。

师:你们能够从中发现什么规律?

生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。

师:还能发现什么呢?

生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。

师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。

师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?

(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)

师:刚才这位同学在算出比值的时候,你们发现了什么?

生:不管怎样,它们的比值不变。

师:这个比值实际上就是什么呀?(板书:每题的分数)

师:你能用一个关系式表示吗?

板书关系式:成绩/答对的题目=每题的分数(一定)

师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)

1表中有( )和( )两种量。

2 路程是怎样随着时间的变化而变化的?

3 任意写出三个相对应的路程和时间的比,并算出它们的比值。

4 比值实际上表示( ),请用式子表示它们的关系。

(学生交流汇报,师板书关系式)

师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?

(结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)

反思:

从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课 ,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。

以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。

正比例课件 篇6

教学目标:

1.掌握用正比例的方法解答相关应用题。

2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。

3.培养学生分析问题、解决问题的能力。

4.发展学生综合运用知识解决问题的能力。

教学重点:

掌握用正比例的方法解答相关应用题。

教学难点:

通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,掌握用正比例的方法解答相关应用题。

教 法:

创设情境,质疑引导。经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。

学 法:

理解分析与合作交流相结合。

教 具: 课件

教学过程:

一、 定向导学(5分)

1、判断下面每题中的两种量成什么比例?并说明理由。

(1)单价一定,总价和数量。

(2)我们班学生做操,每行站的人数和站的行数。

(3)速度一定,路程和时间。

(4)每吨水的价钱一定,水费和用水的吨数。

2、出示学习目标

(1).掌握用正比例的方法解答相关应用题。

(2).通过解答应用题,熟练地判断两种相关联的量是否成正比例,加深对正比例意义的理解。

二、自主学习(10分钟)

内容:课本61页

1、 方法:先自己看书,在思考问题,尝试做跟踪练习题

2、 时间:5分钟

3、 思考问题:

(1)、题目中有哪些变化的量和不变的量?你是从题中哪里发现的?

(2)、这三种量成什么关系?你是怎样判定的?

(3)、列出关系式。

(4)、学习课本的解题格式。

跟踪练习

小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用多少钱?

三、合作交流(10分钟)

1、选择:

(1)

用比例列式是( )。

① x:2=5:16 ②x:5=16:2 ③5:x =16:2

(2)、用100千克小麦可以磨出75千克面粉,照这样计算,要磨面粉15吨,需要小麦多少吨?解:设需要小麦x吨( )。

① x:15=75:100 ②15:x =100:75 ③15:x =75:100

2、张奶奶家上个月用了8吨水,水费是12.8元。李奶奶家用了10吨水。应缴的水费是多少钱?

3、聪聪8分钟走了500米,照这样的速度,她从家走到学校用了14分钟,聪聪家离学校大约多少米?

四、质疑探究(5分)

做这类应用题的方法步骤是;

(1)题目中有哪些变化的量和不变的量

(2)这三种量成什么关系

(3)列出关系式

五、小结检测(10分)

1、这节课有什么收获?你学会了什么?

2、练习十一的第3、4题

板书设计:

用比例解决问题

(1)题目中有哪些变化的量和不变的量

(2)这三种量成什么关系

(3)列出关系式

正比例课件 篇7

各位领导、老师,上午好!今天我说课的课题是《正比例》,这是北师大版六年级数学下期第二单元《正比例和反比例》中第二节的内容。 我将从以下四个方面对这一节课进行详细的说明。

一、说教材

我从三个方面进行说明

(一)教材分析

教材在北师大版六年级上册安排了比的意义、比的化简与比的应用等内容。体会了生活中存在的变量之间的关系。正比例关系是数学中比较重要的一种数量关系,为此,教材密切联系学生已有的生活经验和学习经验,设计系列情景,让学生体会生活中存在着大量相关联的量,他们之间的关系有共同之处,从而引发学生的讨论与思考,并通过具体的讨论,使学生认识成正比例的量以及正比例在生活中的广泛存在。教材从不同的角度(实际生活、图形)提供了有利于学生探索并理解正比例意义的情景。

(二)学情分析

学生在学习乘法的时,已经初步接触了正比例的变化规律,在六年级上册已经学习了比的意义、比的化简与比的应用等。学生最容易掌握的是判断有具体数据的两个量是否成正比例,最难掌握的是离开具体数据,判断两个量是否成正比例。

(三)说教学目标与重难点:

根据以上分析,我确定本节课的教学目标如下:

1、结合实例认识正比例。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

3、利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。本着在新课程标准,在吃透教材的基础上,我确定了以下教学重点和难点 为了讲清教材的重难点,使学生能够达到本节课设定的教学目标,我再从学法和教法上谈谈。

二、说学法

本节课的教学本着“让学生自主探索”的原则,引导学生,在独立思考的基础上,学会小组合作交流。教学中给学生提供丰富的情景,让学生通过具体问题,具体情境认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生通过观察、比较、分析、归纳等教学活动,自主发现正比例的变化规律,理解正比例的意义。

三、说教法

本节课我运用的教学方法主要有:设疑诱导法、操作发现法和自学讨论法。

四、说教学过程

我们知道“学生是学习的主人,是知识的主动建构者,而教师则是学生学习的指导者,帮助者?”秉着这样的指导思想,整个设计力求体现“以学生发展为本”的教育理念,具体设计如下:

(一)复习导入

让学生举例说说什么是两种相关联的量。这样设计,是为了激发学生学习的兴趣,较好地唤醒学生已有的知识经验,找到新旧知识的结合点。同时也为了引导学生学会观察思考,发现内在的`规律。

(二)自主建构

通过具体问题认识成正比例的量,发现正比例量的特征,并能正确判断正比例的量是本节课的中心任务,为了突出重点,突破难点,发挥学生的主体作用,我在教学中安排了三次感知、体验正比例的活动:

(1)在比较中继续感受成正比例量的特征

在这一环节,我展示了正方形的边长与周长,边长与面积的变化情况图表,请同学们完成表格,并观察其变化规律。

像这样同时出现正面与反面的例子,是为了让学生在比较中把握正比例量的本质特征。引入图像进行比较,是为了让学生对正比例的特征有更形象地认识,在头脑中形成更丰富的表象,达到数形结合,从而使学生真正建构正比例的意义。

(2)从正面初步感受, 成正比例量的特征

在这一环节中,我出示两组生活中成正比例的量,让同学们观察、比较,并发现其变化规律。

这样设计是为了让学生模仿前面找规律的方法,自主发现正比例量的特征。

(3)尝试归纳正比例的意义。

最后让学生在前面充分感知的基础上,尝试归纳正比例的意义,从而真正建构正比例的意义。

(三)分层提高

练习的设计力求体现多样性、层次性和发散性。在这一练习中,正比例的量不止一组,这样有利于培养学生的发散性思维。

(四)小结提升

让学生谈谈这节课的收获。主要是借助板书,让学生对新知识进行一次全面的回顾梳理,内化过程,培养学生总结概括能力!

(五)拓展延伸

出示两道拓展题,让学生将新知识的学习与巩固由课内延伸到课外。

对于本节课我就先说到这里,由于课堂上存在着许多不确定的因素,部分环节可能会稍作改动,另外,本节课在教学设计和具体环节的安排上,可能还存在着不足的地方,恳请各位领导和老师给予批评指正,谢谢!

正比例课件 篇8

教学目标:

1、使学生能正确判断题中涉及的量是否成正比例关系。

2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。

3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。

4、在成功解决生活中的实际问题中体会数学的价值。

教学重点:

利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。

教学难点:

正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。

1、填空并说明理由。

(1)速度一定,路程和时间成比例。

(2)单价一定,总价与数量成()比例。

(3)每块地砖的大小一定,砖的块数和所铺的总面积成()比例。

【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】

3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?

师:相信通过这一节课的学习,你一定会找到解决的方法的'。

张大妈:我们家上个月用了8吨水,水费是12.8元。

李奶奶:我们家用了10吨水,上个月的水费是多少钱?

师:你能利用数学知识帮李奶奶算出上个月的水费吗?

(1)学生自己解答。

(2)交流解答方法,并说说自己想法。

算式是:12.8÷8×10=1.6×10=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)

(也可以先求出用水量的倍数关系再求总价。)10÷8×12.8=1.25×12.8=16(元)

【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。】

师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

(3)小黑板出示以下问题让学生思考和讨论:

1)题目中相关联的两种量是()和(),说说变化情况。

2)()一定,()和()成()比例关系。

师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。】

(6)将答案代入到比例式中进行检验。

你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?

学生交流,汇报。

2、变式练习。

刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:

张大妈:我们家上个月用了8吨水,水费是12.8元。王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

(1)比较一下改编后的题和例5有什么联系和区别?

(3)集体订正,学生说一说你是怎么想的?

师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的思考过程是怎样的?

学生讨论交流,汇报。

师总结:

1、分析找出题目中相关联的两种量。

2、判断他们是否是正比例关系。

3、根据正比例的意义列出比例。

4、最后解比例。

5、检验作答。

三、巩固练习,形成技能。

1、解决课前提出的问题。小明在解决这一问题时,采集到了下面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗

学生读题后,先思考以下三个问题。

①题中已知哪两种相关联的量?

②它们成什么比例关系?你是根据什么判断的?

②你能列出等式吗?

学生独立完成,并汇报解答过程。

2、教科书P60“做一做”。

学生独立解答。

【设计意图:通过练习的巩固,提高学生解决问题的能力。同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。】

练习九第3、5题。

正比例课件 篇9

教学目标:

1、使学学生能正确判断题中涉及的量是否成正比例关系。

2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。

3、培养学学生运用所学知识解决实际问题的能力,培养学学生勇于探索精神。

4、在成功解决学生活中的实际问题中体会数学的价值。

教学重点:

利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。

教学难点:

正确判断两个量是否成正比例的`关系,找出相等关系并列出含有未知数的等式。

1、填空并说明理由。

(1)速度一定,路程和时间成比例。

(2)单价一定,总价与数量成()比例。

(3)每块地砖的大小一定,砖的块数和所铺的总面积成()比例。

【设计意图:通过复习,让学学生温故而知新,为学习下面的内容铺垫。】

3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?

学生3:利用影子的长度量。(如果没有学学生说教师可做适当引导。)

老师:相信通过这一节课的学习,你一定会找到解决的方法的。

【设计意图:激起学学生学习这习欲望,欲望是产学生动机的催化剂。】

张大妈:我们家上个月用了8吨水,水费是12.8元。

李奶奶:我们家用了10吨水,上个月的水费是多少钱?

老师:你能利用数学知识帮李奶奶算出上个月的水费吗?

(1)学学生自己解答。

(2)交流解答方法,并说说自己想法。

算式是:12.8÷8×10=1.6×10=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)

(也可以先求出用水量的倍数关系再求总价。)10÷8×12.8=1.25×12.8=16(元)

【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学学生在后面的学习中构建知识结构。】

老师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

(3)小黑板出示以下问题让学学生思考和讨论:

1)题目中相关联的两种量是()和,说说变化情况。

2)()一定,()和()成()比例关系。

老师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

反馈学学生解题情况。

【设计意图:在教师引导下,学学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学学生充分地表达自己的见解,培养学学生的辩证思维能力和口语交际能力。】

(6)将答案代入到比例式中进行检验。

你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?学学生交流,汇报。

2、变式练习。

刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:

张大妈:我们家上个月用了8吨水,水费是12.8元。王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

(1)比较一下改编后的题和例5有什么联系和区别?

(2)学学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

(3)集体订正,学学生说一说你是怎么想的?

3、概括总结

老师:刚才我们用正比例知识帮李奶奶和王大爷解决了学生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的思考过程是怎样的?

学学生讨论交流,汇报。

老师总结:

1、分析找出题目中相关联的两种量。

2、判断他们是否是正比例关系。

3、根据正比例的意义列出比例。

4、最后解比例。

5、检验作答。

三、巩固练习,形成技能。

1、解决课前提出的问题。小明在解决这一问题时,采集到了下面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗

学学生读题后,先思考以下三个问题。

①题中已知哪两种相关联的量?

②它们成什么比例关系?你是根据什么判断的?

②你能列出等式吗?

学生独立完成,并汇报解答过程。

2、教科书“做一做”。

学生独立解答。

【设计意图:通过练习的巩固,提高学学生解决问题的能力。同时从学学生的学生活实际入手,引导学学生把所学的知识运用与学生活实践,从中体会所学知识的学生活价值。】