初中数学教案汇总

初中数学教案汇总。

资料主要是指生活学习工作中需要的材料。平常的学习工作中,我们会经常使用到一些资料。参考资料有助于我们的工作进一步发展。你是不是在寻找一些可以用到的资料呢?为满足你的需求,小编特地编辑了“初中数学教案汇总”,欢迎你阅读与收藏。

初中数学教案 篇1

初中数学分层次教学案例

【案例主题:】学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。

【背景:】我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:??

例题:课本p123证明两个角之间的关系,

请同学们总结一下他们可能出现的情况。

【活动过程】师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)

生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)

师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。

师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。

在师生的共同研讨下得出了这些方法。

师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。

生:??以前我不敢发言,我怕说的不对会被同学们笑话,而今天的他的方法恰好是我前几天才预习过的,所以一下子??我今天才发现不是这样??我今后还会努力发言的??

【理念反思】:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。

1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。

2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的参与

就不是主动性参与,而是被动的、消极的参与。

3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。

4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。

初中数学教案 篇2

图样,图样,还是图样。到处都是图样,有的用尖细的木片潦草地写在满是灰尘的大理石桌上,有的用一块木炭涂在墙上,有的用粉笔画在地上。阿基米德穿着一件白色的旧长袍,坐在桌子上思索起来。手指象发烧似的微微颤抖。豆大的汗珠裹着灰尘,从他极度疲倦的脸上落在手上,落到衣服上,落到随手扔在桌子上的一卷草片纸上。

他没有跑,没有象一个无耻的胆小鬼那样从战场上逃跑。他竭尽全力,把全部的智慧和热情都献给了这座城市。多少个不眠之夜,多少个酷热难耐的白天,他就是整个叙拉古防御阵地的大脑和心脏。一提到他的名字,罗马人就惊恐地逃离城墙,他们唯恐躲避不及致命的投石炮,以及纷纷落下的炽热的涂满油脂的麻屑,标枪与长矛的骤雨。不就是他,不动咫尺就把接近城市海防工事的罗马舰队都烧毁了吗?不就是他,一个人用他发明的一组复杂的滑车把罗马的兵船吊在半空,再从高处把船抛向深海里去了吗?但这对于一个人的独创才能和精力来说,已经是极限了,他已经是一个衰弱的老人,他的手握不住战剑。他坚持留在阵地上,直至敌人出现在城墙外边。而这时戴着盔形帽的罗马人已经开始在被岁月磨出来的马路的石块上晃动。希腊人竭尽最后的力量进行抵抗,肉搏战当然没有阿基米德参加的份。。。。。。

在中午被烈日晒的发烫的物体,现在让令人惬意的凉爽的空气温柔地笼罩着。战斗的喊声透过厚实的门帘隐隐约约地传进屋里。挂在两个窗户上的草帘子使得屋里稍微有点昏暗,但一点也不妨碍看清楚眼睛看惯的东西。 生命就要完结,这一生是漫长而又艰难的。在命运给予他的七十五年里,在不停的探索中,在持续的紧张中,在旅行中,在工作室,造船厂和采石场的不断的争论中,他从未能回顾过自己的人生,没有考虑一下是否活得合理。伊壁鸠鲁(前341—前270 古希腊唯物主义哲学家,在伦理观上,主张人生的目的在于避免苦痛,使心身安宁,怡然自得,这才是人生最高的幸福)这位激进的老人如此忘情地说过的那种快乐,哪怕是一部分,阿基米德也没有从生活中得到过。在他还是一个十七岁的青年人时,曾经站在这位伟大哲学家的坟墓上,思索着用自己的一生实现他富有人生乐趣的哲学。他实现了吗?

还在青年时代,他就踏上了这条荆棘丛生的,曲折的,布满无数坎坷的学者道路。学者的生活。。。。。。当生活道路开始的时候,他曾经把生活想象的很不实际。他用充满甜蜜的幸福,普遍的崇敬和持久不变的,任凭什么也不能蒙蔽的荣誉来描绘自己青年时代雄心勃勃的梦想。但生活并非如此,他竟然是格外地严酷。他实际体验到,这生活是一天一时也不停地,终身为一个神灵,一个偶像,一个各种思想和愿望的主宰服务。科学就是一个催眠术家,只要一次受到科学真理魔术般的诱惑,立刻就会为了科学而忘掉一切,直至最后进入坟墓。

荣誉是有的,但是这荣誉足以为不学无术者和嫉妒者们的大声嘲笑所败坏。是有许多狂热的崇拜者,但也有许多恶毒的非难者,他们不错过任何一个机会,通过假借的名义,公开和秘密地对他进行侮辱,诋毁和诽傍,以他为笑柄。。。。。。

他本人的生活是这样,他父亲的生活也是这样。他父亲叫做菲迪亚斯。供人参阅的备忘录描述了他很早的童年时代的情形,小阿基米德似乎不得不让每一个新认识的人相信,他的父亲只是和奥利匹亚的>像和雅典的女神像的著名的建造者,比阿基米德天文学家的父亲早生一百多年的雕刻家菲迪亚斯同姓。奇怪的是,菲迪亚斯竟然不是国王亥厄洛的亲戚,相反,完全出乎意料之外,阿基米德却是国王亥厄洛的一个亲戚,就是说,也是国王儿子格隆的一个亲戚。。。。。。

这里是繁华的亚历山大城。阿基米德花了许多时间沿着城市的石头道散步,登上佛洛斯灯塔,从那里了望拥簇着似乎是从地球上所有有人居住的地方抵达到这里的希腊,罗马,腓尼基,波斯和其它国家的船只的港湾。但是,比这多得多的时间,他是在著名的亚历山大图书馆里度过的。世界上任何一个图书馆可能都要羡慕这家图书馆所收集的抄本和手稿。在图书馆里,集中了伟大的亚历山大城所有最优秀的青年人。在和那些崇拜本国著名的欧几里德的年轻人的热烈争论中,阿基米德对自己的科学立场的理解逐渐成熟,有些地方与亚历山大人接近,有些地方则与他们截然不同。但是,尽管在观点上有所不同,他刚一熟悉欧几里德的著作,对已故的伟大学者欧几里德的虔诚的敬意就完全征服了阿基米德。欧几里德的>从此成为他整个漫长一生的必读之书。。。。。。

战斗的呐喊声越来越大。厚实的窗帘已经挡不住获胜的罗马人狂喜的欢呼声,战剑打击叙拉古最后一批保卫者的盾牌的叮当声,还有那刺向他们被长时间的防御战折磨得精疲力尽的身体的沉闷声。获胜的敌人已经占领了这座苦难的城市,又醉心于卑鄙无耻的,令人痛恶的杀掠,连儿童,妇女和老人也不放过。

非常奇怪的是,所以这一切————战剑的叮当声,垂死者的呻吟声,罗马人胜利的欢呼声,都是这样地遥远,似乎是在半个多世纪以前发出的。阿基米德突然以一种可怕的清醒回想起自己乘一艘小船从亚历山大到叙拉古所经历的漫长而又十分危险的旅程。在危机四伏的不平静的大海中,绿色的`波涛的巅峰翻腾着白色的大理石般的泡沫,不停地撞击着毫无保护的不坚固的小船,船上可怜的人们觉得好像无论是人,还是超人的力量都已经不能把他们从海神的怀抱里解救出来。 而就在这时,舵手使出全身的力气掌稳沉重的船舵,高高地向上搬动舵尾,用力地冲向那轰隆作响的摇荡的浪山。船象一匹戴上嚼子的马,战栗着,一会儿呆立在高高的浪峰上,一会儿又摇晃着跌进随之而来的无底的深渊。。。。。。

船驶离亚历山大之时,装饰着色彩缤纷的船帆,宛如一位服装时髦的美女,而抵达叙拉古时,却遍体鳞伤,千疮百孔,失去了桅杆和船帆,简直就是一个衣衫褴褛的女乞丐了。。。。。。

一个罗马兵凶恶的面孔突然出现在眼前,在他身后是一群形形色色的叙拉古人,正在走去迎接无数条载着有半死不活的航海者的战船。这个外国的不速之客从哪里来?是怎么来的呢?这个人张牙舞爪,脖子上的青筋暴起,叫嚷者什么,阿基米德却听不见他的话。往事仍然把阿基米德死死地拖住不放,忘却现实的销魂的魔力还没有退却。。。。。。

幻影没有消失。在它还没有最后填满整个房间,把整个古老的叙拉古阳光充足的港湾里毫无剩余地从房间里排挤出去之前,它在数学家视线模糊的眼睛里仍然在扩大,扩大。啊,原来这里还有个人。这时,一个强盗,杀人凶手找到了数学家阿基米德的住宅。这个残忍的罗马士兵————数学家以前几乎没有想过的死亡就这样悄悄地向她逼近了。

"别动我的图案!"老人声音低微,但语气却强硬地命令道。这就是他说的最后一句话。一把宽大的双刃剑用力地砍在这位伟大的世界公民头发斑白,疲惫不堪的,但却威严自豪,充满灵感的头颅上。。。。。。

据说,阿基米德就这样在位于被罗马人攻取并抢劫的叙拉古的一条街道上的房间里被杀害了。甚至罗马主将马尔采勒,这个长期徒劳地企图占领这座城市的不共戴天的,阴险的敌人,在得知这位最伟大的学者和最热情和无畏的爱国主义者的死讯之后,也感到极度的悲伤。

初中数学教案 篇3

教学目标

1、认识度、分、秒,会进行度、分、秒间单位互化及角的和、差、倍、分计算。

2、通过度、分、秒间的互化及角度的简单运算,经历利用已有知识解决新问题的探索过程,培养学生的`数感和对数学活动的兴趣。

3、在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,尊重和理解他人的见解,从而在交流中获益。

教学重点

度、分、秒间单位互化及角的和、差、倍、分计算。

知识难点

度、分、秒间单位互化及角的和、差、倍、分计算。

教学准备

量角器、三角尺。

教学过程

(师生活动)设计理念

复习

任意画一个锐角和钝角,用字母分别表示这两个角,用量角器分别理出这两个角的度数。复习角的概念,角的表示及量角器的使用,为学习角度制作准备。

探究新知在航行、测绘等工作以及生活中,我们经常会碰到上述类似问题,即如何描述一个物体的方位。

让学生回忆学过的描述方法,师生共同探讨解决问题的办法。

不断移动可疑船的位置,让学生描述缉私艇的航线,探求解决问题的规律。

方位的表示通常用北偏东多少度、北偏西多少度或者南偏东多少度、南偏西多少度来表示。北偏东45度、北偏西45度、南偏东45度、南偏西45度,分别称为东北方向、西北方向,东南方向、西南方向。

初中数学教案 篇4

一、课题引入

为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

二、课题研究

在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的`实际意义是不同的.

为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

三、巩固练习

例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

日期周二周三周四周五

开盘+0.16+0.25+0.78+2.12

收盘-0.23-1.32-0.67-0.65

当日收盘价

试在表中填写周二到周五该股票的收盘价.

思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

初中数学教案 篇5

课 题

§2.2.3 配方法(三)教学目标(一)教学知识点

1.利用方程解决实际问题. 2.训练用配方法解题的技能.(二)能力训练要求

1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.

2.能根据具体问题的实际意义检验结果的合理性. 3.进一步训练利用配方法解题的技能.

通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性. 教学重点

利用方程解决实际问题 教学难点

对于开放性问题的解决,即如何设计方案 教学方法 分组讨论法 教具准备

投影片二张 第一张:练习(记作投影片§2.2.3 A)第二张:实际问题(记作投影片§2.2.3 B)教学过程

Ⅰ.巧设情景问题,引入新课

[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片§2.2.3 A)用配方法解下列一元二次方程:(1)x2+6x+8=0;(2)x2-8x+15=0;(3)x2-3x-7=0;(4)3x2-8x+4=0;(5)6x2-11x-10=0;(6)2x2+21x-11=0.

[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、(4)、(6). [师]各组做完了没有? [生齐声]做完了.

[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.

[生甲]我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x1=-2,x2=-4.解方程(3)时,在配方的时候,他配错了,即 x2-3x-7=0,x2-3x=7,x2-3x+32=7+32 应为(-)2.

[师]很好,这里一次项-3x的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢? [生乙]方程(3)的解为x1= [师]好,继续.

[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x1=,x2=-.

[生丁]××同学做的是方程(2)、(4)、(6).他解的完全正确,即

方程(2)的解:x1=5,x2=3,方程(4)的解:x1=2,x2=,方程(6)的解:xl=,x2=-11.

[师]利用配方法求解方程时,一定要注意:

①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.

②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1.

另外,大家在利用配方法求解方程时,要有一定的技能.这就需

1232523232337337.,x222要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.

这节课我们就来解决一个实际问题.

Ⅱ.讲授新课

[师]看大屏幕.(出示投影片§ 2.2.3B)在一块长16 m,宽12 m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗? [师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法. [生甲]我们组 的设计方案如右图 所示,其中花园四 周是小路,它们的 宽度都相等.

这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2 m或12 m.

[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由. [生乙]甲组的设计符合要求.

我们可以假设小路的宽度为x m,则根据题意,可得方程(16-2x)(12-2x)= ×16×12,也就是x2-14x-24=0.

然后利用配方法来求解这个方程,即 x2-14x+24=0,x2-14x=-24,x2-14x+72=-24+72,(x-7)2=25,x-7=±5,即x-7=5,x-7=-5.

∴x1=12.x2=2.

因此,小路的宽度为2 m或12 m.

由以上所述知:甲组的设计方案符合要求.

[生丙]不对,因为荒地的宽度是12 m,所以小路的宽度绝对不能为12 m.因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2 m.

[师]大家来作判断,谁说的合乎实际? [生齐声]丙同学说得有理.

[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案. [生丁]我们组

的设计方案如右图.

我们是以矩形 的四个顶点为圆心,以约5.5 m长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.

因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为x m,根据题意,可得

πx2=×12×16.

解得x=±9612≈±5.5.

因为半径为正数,所以x=-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求. [生戊]由丁同 学组的启发,我又 设计了一个方案,如右图.

以矩形的对角

线的交点为圆心,以5.5 m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.

[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.

[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?

[生庚]我们组 设计的方案如右图. 顺次连结矩形 各边的中点,所 得到的四边形即 是作为花园的场 地.

因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24 m2(即×6×8),所以四个直角三角形的面积之和为96 m2,则剩下的面积也正好是96 m2,即等于矩形面积的一半.因此这个设计方案也符合要求.

[生辛]我们组设计的方案如下图. 12

图中的阴影部分可作为建花园的场所.

因为阴影部分的面积为96 m2,正好是矩形面积的一半,所以这个设计也符合要求. [生丑]我们组 设计的方案如右图.

图中的阴影部 分可作为建花园的

场地.

经计算,它符合要求.

[生癸]我们组的设计方案如下图.

图中的阴影部分是作为建花园的场地. [师]噢,同学们能帮癸组求出图中的x吗? [生]能,根据题意,可得方程 2×(16-x)(12-x)=×16×12,即x2-28x+96=0,x2-28x=-96,x2-28x+142=-96+142,(x-14)2=100,x-14=±10.

∴x1=24,x2=4.

因为矩形的长为16 m,所以x1=24不符合题意.因此图中的x只能为4 m.[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案. 1212 接下来,我们再来看一个设计方案.

Ⅲ.课堂练习

(一)课本P55随堂练习1 1.小颖的设计方案如图所示,你能帮助她求出图中的x吗?

解:根据题意,得

(16-x)(12-x)= ×16×12,即x2-28x+96=0.

解这个方程,得 x1=4,x2=24(舍去).

所以x=4.

(二)看课本P53~P54,然后小结.

Ⅳ.课时小结

本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性.

另外,还应注意用配方法解题的技能.

Ⅴ.课后作业

(一)课本P55习题2.5 1、2(二)1.预习内容:P56~P57 2.预习提纲

如何推导一元二次方程的求根公式.

Ⅵ.活动与探究

汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米,查有关资料知,甲种车的刹车距离S甲(米)与车速x(千米/时)之间有下列关系:S甲=0.1x+0.01x2;乙种车的刹车距离S乙(米)与车速x(千米/时)的关系如下图所示.

请你就两车的速度方面分析相碰的原因.

[过程]通过对本题的研究、探讨,让学生体会数学与现实生活紧密相连.

由甲车的刹车距离和车速的关系式S甲=0.1x+0.01x2,又S=12,从而可求得甲

车速度,对乙车而言,从图象上知刹车距离与车速是成正比例函数关

甲系,因而可设为x乙=kx,又其过点(60,15),从而得到k值,由10

[结果] 解:对于甲车:

∵甲车刹车距离为12米,根据题意,得 12=0.1x+0.01x2.

解这个方程,得x1=30或x2=-40(舍去),即甲车的车速为30千米/时,不超过限速.

对于乙车:

由图象知,其关系是一个正比例函数,设此函数为x乙=kx ∵经过点(60,15),∴15=60k,∴k=,即此函数解析式为S乙=x 根据题意,得10∴40∴乙车超过限速40千米/时的规定.∴就速度方面分析,两车相碰的原因在于乙车超速行驶. 板书设计§2.2.3 配方法(三)一、实际问题的设计方案: 设计方案一: 设计方案二: 设计方案三:141414设计方案四:二、课堂练习三、课时小结四、课后作业

初中数学教案 篇6

一、教学目标

知识与技能目标

1.初步了解作函数图象的一般步骤;

2.能熟练作出一次函数的图象,掌握一次函数及其图象的简单性质;

3.初步了解函数表达式与图象之间的关系。

过程与方法目标

经历作图过程中由一般到特殊方法的转变过程,让学生体会研究问题的基本方法。

情感与态度目标

1.在作图的过程中,体会数学的美;

2.经历作图过程,培养学生尊重科学,实事求是的作风。

二、教材分析

本节课是在学习了一次函数解析式的基础上,从图象这个角度对一次函数进行近一步的研究。教材先介绍了作函数图象的一般方法:列表、描点、连线法,再进一步总结出作一次函数图象的特殊方法??两点连线法。结合一次函数的图象,教材以议一议的方式,引导学生探索函数解析式与图象二者间的关系,为进一步学习图象及性质奠定了基础。

教学重点:了解作函数图象的一般步骤,会熟练作出一次函数图象。

教学难点:一次函数及图象之间的对应关系。

三、学情分析

函数的图象的概念及作法对学生而言都是较为陌生的。教材从作函数图象的一般步骤开始介绍,得出一次函数图象是条直线。在此基础上介绍用两点连线得一次函数的图象,学生就容易接受了。在函数解析式与图象二者之间的探讨这部分内容上,不要作更高要求,学生能回答书中的问题就可以了。教学中尽可能的多作几个一次函数的图象,让学生直观感受到一次函数的图象是条直线。

四、教学流程

一、复习引入

下图是小红某天内体温变化情况的曲线图。你知道这幅图是怎样作出来的吗?把每个时间与其对应的体温分别作为点的横坐标和纵坐标,在直角坐标系中描出这些点,这样就可以作出这个图象。

二、新课讲解

把一个函数的自变量和对应的因变量的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

下面我们来作一次函数y = x+1的图象

分析:根据定义,需要在直角坐标系中描出许多点,因此我们应先计算这些点的横、纵坐标,即x与对应的y的值。我们可借助一个表格来列出每一对x,y的值。因为一次函数的自变量X可以取一切实数,所以X一般在0附近取值。

解:列表:

描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。

连线:把这些点依次连接起来,得到y = x+1图象(如图)它是一条直线。

三、做一做

(1)仿照上例,作出一次函数y= ?2x+5的图象。

师:回顾刚才的作图过程,经历了几个步骤?

生:经历了列表、描点、连线这三个步骤。

师:回答得很好。作函数图象的一般步骤是列表、描点、连线。今后我们可以用这个方法去作出更多函数的图象。

师:从刚才同学们作出的一次函数的图象中我们可以观察到一次函数图象是一条直线。

(2)在所作的图象上取几个点,找出它们的横、纵坐标,验证它们是否都满足关系:y= ?2x+5

四、议一议

(1)满足关系式y= ?2x+5的x 、 y所对应的点(x,y)都在一次函数y= ?2x+5的图象上吗?

(2)一次函数y= ?2x+5的图象上的点(x,y)都满足关系式y= ?2x+5吗?

(3)一次函数y=kx+b的图象有什么特点?

一次函数y=kx+b的图象是一条直线,因此作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了。一次函数y=kx+b的图象也称为直线y=kx+b

例1做出下列函数的图象

教师点评:作一次函数图象时,通常选取的两点比较特殊,即为一次函数和X轴、 y轴的交点,在列表计算时,分别令X=0,y=0就可计算出这两点的坐标。正比例函数当X=0时,y=0,即与x 、 y铀的交点重合于原点。因此做正比例函数的图象时,只需再任取一点,过它与坐标原点作一条直线即可得到正比例函数的图象。从而正比例函数y=kx的图象是经过原点(0,0)的一条直线。

练一练:作出下列函数的图象:

(1)y= ?5x+2,???? (2)y= ?x

(3)y=2x?1,(4)y=5x

五、课堂小结

这节课我们学习了一次函数的图象。一次函数的图象是一条直线,正比例函数的图象是经过原点的一条直线。在作图时,只需确定直线上两点的位置,就可得到一次函数的图象。一般地,作函数图象的三个步骤是:列表、描点、连线。

六、课后练习

随堂练习习题6.3

五、教学反思

本节课主要介绍作函数图象的一般方法,通过对一次函数图象的认识,得到作一次函数及正比例函数的图象的特殊方法(两点确定一条直线)。让学生能够迅速找到直线与坐标轴的交点,这是本节课的难点。数形结合,找准这两个特殊点坐标的特点(x=0或y=0),让学生理解的记忆才能收到较好的效果。

初中数学教案 篇7

教学目标

1、使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2、培养学生观察能力,提高他们分析问题和解决问题的能力;

3、使学生初步养成正确思考问题的良好习惯、

教学重点和难点

一元一次方程解简单的应用题的方法和步骤、

课堂教学过程设计

一、从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题、

例1 某数的3倍减2等于某数与4的和,求某数、

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3、

答:某数为3、

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4、

解之,得x=3、

答:某数为3、

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一、

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系、因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程、

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤、

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?

师生共同分析:

1、本题中给出的已知量和未知量各是什么?

2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

3、若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

x-15%x=42 500,

所以 x=50 000、

答:原来有 50 000千克面粉、

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:

(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿、

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意、即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系、(这是关键一步);

(3)根据相等关系,正确列出方程、即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案、这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义、

例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨、解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误、并严格规范书写格式)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),

解这个方程: 2x=10,

所以 x=5、

其苹果数为 3× 5+9=24、

答:第一小组有5名同学,共摘苹果24个、

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程、

(设第一小组共摘了x个苹果,则依题意,得 )

三、课堂练习

1、买4本练习本与3支铅笔一共用了1、24元,已知铅笔每支0、12元,问练习本每本多少元?

2、我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元、求1978年末的储蓄存款、

3、某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数、

四、师生共同小结

首先,让学生回答如下问题:

1、本节课学习了哪些内容?

2、列一元一次方程解应用题的方法和步骤是什么?

3、在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案、其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆、

五、作业

1、买3千克苹果,付出10元,找回3角4分、问每千克苹果多少钱?

2、用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3、某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多 150台、这家工厂前年10月生产电视机多少台?

4、大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉、求每个小箱子里装有洗衣粉多少千克?

5、把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元、求得到一等奖与二等奖的人数

初中数学教案 篇8

①结合你对一元一次方程中的一次的理解,说一说你对一次函数中的“一次”的理解. ②k可以是怎样的数?

③你怎样认识一次函数和正比例函数的关系?

一个常数b的`和即 Y=kx+b 定义:一般地,形

Y=kx+b( k,b 是常数,k≠0 )的函数,叫做一次函数, 当

b=0时,

Y=kx+b即Y=kx,所以说正比例函数是一种特殊的一次函数。

例1、下列函数中,Y是X的一次函数的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X

学生独立

A①②③B①③④C①②④D①②③④

例2、写出下列各题中x与y之间的关系式,并判

解释与应用

断,y是否为x的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间(时)之间的关系式;②圆的面积y(厘米2)与他的半径x(厘米)之间的关系:③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度y(厘米)之间的关系式

初中数学教案 篇9

初中数学分层教学的理论与实践

天山六中裴焕民

一、分层教学的含义

分层教学是指教师在学生知识基础、智力因素存在明显差异的情况下,有区别地设计教学环节进行教学,遵循因材施教的原则,有针对性地实施对不同类别学生的学习指导,不仅根据学生的不同选择不同的教法、布置作业,还因材施“助”、因材施“改”、因材施“教”,使每个学生都能在原有的基础上得以发展,从而达到不同类别的教学目标的一种教学方法。

分层教学是“着眼于与学生的可持续性的、良性的发展”的教育观念下的一种教学实施策略。所谓分层教学(同班、同年级分层次教学)就是教师在教授同一教学内容时,对同一个班内不同知识水平和接受能力的优、中、差生以相应的三个层次的教学深度和广度进行合讲分练,做到课堂教学有的放矢,区别对待,使每个学生都在自己原来的基础上学有所得,思有所进,在不同程度上有所提高,同步发展。教师的教学方法应从最低点起步,分类指导,逐步推进,做到“分合”有序,动静结合,并分层设计练习,分层设计课堂,分层布置作业,引导学生全员参与,各得进步。

二、分层教学必要性分析

1、教学现状呼唤分层教学的实施

义务教育的实施使小学毕业生全部升入初中学习,这样,在同一班里,学生的知识、能力参差不齐。但是,应试教育留下的种种弊端抑制了各层次的学生的学习积极性和兴趣,整齐划一的教学要求,忽视了学生之间的差异。为了使教育面向全体学生,减轻部分学生过重的负担,使他们在原有的基础上有所提高,全面提高教学质量,又要使有特长的学生得到更进一步的发展。因此必须实施因材施教,根据不同的学生的具体情况,确立不同的教学目标,采取不同的教学方法,使其个性得到充分发展,为社会培养各种层次的有用之人。

2、新课程改革呼唤分层教学的实施

数学课程改革的核心是课程的实施,而教学是课程实施的基本途径。课程改革归根到底是要转变教师的传统教学观念:包括教学方式的转变——从“教”到

“引”;知识技能掌握理念的转变——从“满堂灌”、“书山题海”到“在亲身经历中体会、理解、掌握知识技能”,强调自我的情感体验;教材观的转变——从“教教材”到“用教材”,教材变成我们引导学生探究知识的工具之一;评价机制的转变——从“唯分数论”到“适合学生自身特点的发展”,这是实施分层教学的原动力,但也是现今新课程改革的一个难点。

在新课改中实施分层教学法的目的是逐步树立学困生学习的信心,激发中等生的学习潜力,扩大优生的学习面。为了适应当前素质教育的需要,我们要采用针对性的矫正和帮助,进行分层教学,分类指导,及时反馈,从中探索出一条教学改革的新路子。

3、学生个体差异的客观存在

心理学的研究结果表明:学生的学习能力差异是存在的,特别是学生在数学学习能力方面存在着较大的差异这已是一个不争的事实。造成差异的原因有很多,学生的先天遗传因素及环境、教育条件都有所不同,还有社会因素(即环境、教育条件、科学训练),这些原因是对学生学习能力的形成起着决定性作用,所以学生所表现出的数学能力有明显差异也是正常的。

学生作为一个群体,存在着个体差异

(1)智力差异。每个学生因为遗传基因的不同,智力的差异是不可避免的。有的人聪明;有的人愚钝,有的人形象思维强;有的逻辑思维强;有的人记忆力超人,但推理能力较差;有的人记忆力较差,却推理能力过人。

(2)学习基础差异。不同的学生在小学的数学状况不一样:有的学生数学十分优秀,有的学生数学学习基本还没入门,两极分化相当严重。

(3)学习品质差异。有的学生学习数学十分认真,有一套自己的数学学习方法,学得轻松愉快;而有的学生因为没有入门,数学学得十分艰难,部分学生甚至对数学学习丧失了信心。

4、分层次教学符合因材施教的原则

目前我国大部分省市的数学教学采用的是统一教材、统一课时、统一教参,在学生学习能力存在差异的情况下,在教学过程中往往容易产全“顾中间、丢两头”。如不因材施教,就使部分学生就成了陪读、陪考。数学能力强的学生潜能得不到充分发挥,能力稍差的学生就可能变成了后进生。有研究结果表明:教师、

家庭、社会、学生、学校等方面的因素都有可能是形成后进生的原因,其中有50%的原因是来自教师在教学中的失误。我们的基础教育既要注意确保学生的共性需求,又要顾及学生的个性发展,所以进行分层教育确有必要。

5、分层次教学能够有效推动教学过程的展开

按照教育家达尼洛夫关于教学过程的动力理论之说,认为只有学生学习的可能性与对他们的要求是一致的,才可能推动教学过程的展开,从而加快学习成绩的提高,而这两者的统一关系若被破坏,就会造成学业的不良后果。学生的学习可能是由他们生理和心理的一般发展水平与对某项学习的具体准备状态所决定的,学生学习可能性的构成因素中既有相对稳定的因素,又有易变的因素。相对稳定的因素,决定了学生在一段时间内可能达到的学习水平的范围,决定了学业不良学生要取得学业进步只能是一个渐进的过程;易变的因素,使学生能在:一定的主客观条件下提高或降低自己的实际可能性水平,从而促进或阻碍学习可能性与教学要求之间矛盾的转化,加快学习成绩提高或降低的速度。由此可见,分层次教学是着眼于协调教学要求与学生学习可能性的关系的一种极好的手段,使它们之间能相适应,从而推动教学过程的展开。

三、分层教学研究的目的意义

捷克教育家夸美纽斯在十七世纪提出来的班级授课制以其大大提高教学效率、加强学校工作的计划性和实际社会效益风行了三百多年后,其固有的不利于学生创造能力的培养和因材施教等种种弊端与社会发展对教育的要求的矛盾越来越尖锐起来。随着科学技术的发展,社会日益进步,教育资源和教育需求的增长和变化,班级授课制在我国做出辉煌的贡献后逐步显现出其先天的严重不足。教师在班级授课制下对能力强的学生“吃不饱”,能力欠佳的学生“吃不消”普遍感到力不从心。分层教学在这种情况下应运而生,成为优化单一班级授课制的有利途径。

1.有利于所有学生的提高:分层教学法的实施,避免了部分学生在课堂上完成作业后无所事事,同时,所有学生都体验到学有所成,增强了学习信心。

2.有利于课堂效率的提高:首先,教师事先针对各层学生设计了不同的教学目标与练习,使得处于不同层的学生都能“摘到桃子”,获得成功的喜悦,这极大地优化了教师与学生的关系,从而提高师生合作、交流的效率;其次,教师在

备课时事先估计了在各层中可能出现的问题,并做了充分的准备,使得实际施教更有的放矢、目标明确、针对性强,增大了课堂教学的容量。总之,通过这一教学法,有利于提高课堂教学的'质量和效率。

3.有利于教师全面能力的提升:通过有效地组织好对各层学生的教学,灵活地安排不同的层次策略,极大地锻炼了教师的组织调控与随机应变能力。分层教学本身引出的思考和学生在分层教学中提出来的挑战都有利于教师能力的全面提升。

四、分层教学的理论基础

1、掌握学习理论

布鲁姆提出的“掌握学习理论”主张:“给学生足够的学习时间,同时使他们获得科学的学习方法,通过他们自己的努力,应该都可以掌握学习内容”。“不同学生需要用不同的方法去教,不同学生对不同的教学内容能持久地集中注意力”。为了实现这个目标,就应该采取分层教学的方法。

2、教学最优化理论

巴班斯基的“教学最优化理论”的核心是:教学过程的最优化是选择一种能使教师和学生在花费最少的必要时间和精力的情况下获得最好的教学效果的教学方案并加以实施。分层教学是实现这一目标的有效方式之一。

3、新课标的基本理念

《数学课程标准》提出了一种全新的数学课程理念:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。面向全体学生,体现了义务教育的基础性、普及性和发展性。不仅为数学教学内容的设定指出方向,而且考虑到学生的可持续发展对数学的需求,并为学生学习数学可能产生的差异性留有充分的余地。

五、分层教学实施的指导思想及原则

首先,分层次教学的主体是班级教学为主,按层次教学为辅,层次分得好坏直接影响到“分层次教学”的成功与否。其指导思想是变传统的应试教育为素质教育,是成绩差异的分层,而不是人格的分层。为了不给差生增加心理负担,必须做好分层前的思想工作,了解学生的心理特点,讲情道理:学习成绩的差异是客观存在的,分层次教学的目的不是人为地制造等级,而是采用不同的方法帮助

他们提高学习成绩,让不同成绩的学生最大限度地发挥他们的潜力,以逐步缩小差距,达到班级整体优化。

在对学生进行分层要坚持尊重学生,师生磋商,动态分层的原则。应该向学生宣布分层方案的设计,讲清分层的目的和意义,以统一师生认识;指导每位学生实事求是地估计自己,通过学生自我评估,完全由学生自己自愿选择适应自己的层次;最后,教师根据学生自愿选择的情况进行合理性分析,若有必要,在征得学生同意的基础上作个别调整之后,公布分层结果。这样使部分学生既分到了合适的层次上,又保留了“脸面”,自尊心也不至于受到伤害,也提高了学生学习数学的兴趣。

其次,在分层教学中应注意下列原则的使用:

①水平相近原则:在分层时应将学习状况相近的学生归为“同一层”;

②差别模糊原则:分层是动态的、可变的,有进步的可以“升级”,退步的应“转级”,且分层结果不予公布;

③感受成功原则:在制定各层次教学目标、方法、练习、作业时,应使学生跳一跳,才可摘到苹果为宜,在分层中感受到成功的喜悦;

④零整分合原则:教学内容的合与分,对学生的“放”与“扶”,以及课外的分层辅导都应遵守这个原则;

⑤调节控制原则:由于各层次学生要求不一,因此在课堂上以学、议为主,教师要善于激趣、指导、精讲、引思,调节并控制止好各层次学生的学习,做好分类指导;

⑥积极激励原则:对各层次学生的评价,以纵向性为主。教师通过观察、反馈信息,及时表扬激励,对进步大的学生及时调到高一层次,相对落后的同意转层。从而促进各层学生学习的积极性,使所有学生随时都处于最佳的学习状态。

六、实施分层教学的策略与措施

(一)分层建组

把学生分层编组是实施分层教学、分类指导的基础。学生的分类应遵循“多维性原则、自愿性原则和动态性原则”,教师通过对全班学生平时的数学学习的智能,技能、心理、成绩、在校表现、家庭环境等,并对所获得的数据资料进行综合分析,分类归档。在此基础上,将学生分成好、中、差层次的学习小组,让

初中数学教案 篇10

一、教材的地位与作用

《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。

二、教学目标

(一)知识与技能:

1.了解二元一次方程概念;

2.了解二元一次方程的解的概念和解的不唯一性;

3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

(二)数学思考:

体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。

(三)问题解决:

初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。

(四)情感态度:

培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。

三、教学重点与难点

教学重点:二元一次方程及其解的概念。

教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

四、教法与学法分析

教法:情境教学法、比较教学法、阅读教学法。

学法:阅读、比较、探究的学习方式。

五、教学过程

1.创设情境,引入新课

从学生熟悉的姚明受伤事件引入。

师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。

(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?

(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?

设姚明投进了x个两分球,罚进了y个球,可列出方程。

(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗?

设易建联投进了x个两分球,y个三分球,可列出方程。

师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?

从而揭示课题。

(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。)

2.探索交流,汲取新知

概念思辨,归纳二元一次方程的特征

师:那到底什么叫二元一次方程?(学生思考后回答)

师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)

师:根据概念,你觉得二元一次方程应具备哪几个特征?

活动:你自己构造一个二元一次方程。

快速判断:下列式子中哪些是二元一次方程?

①x2+y=0②y=2x+

4③2x+1=2x ④ab+b=4

(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)

二元一次方程解的概念

师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?

师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。)

二元一次方程解的不唯一性

对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗?师:这些解你们是如何算出来的?

(设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

例:已知方程3x+2y=10,

(1)当x=2时,求所对应的y的值;

(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;

(3)用含x的代数式表示y;

(4)用含y的代数式表示x;

(5)当x=负2,0时,所对应的y的值是多少?

(6)写出方程3x+2y=10的三个解.

(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的`难点。)

大显身手:

课内练习第2题

梳理知识,课堂升华

本节课你有收获吗?能和大家说说你的感想吗?3.作业布置

必做题:书本作业题1、2、3、4。

选做题:书本作业题5、6。

设计说明

本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解、不止一个解、无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。

在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊、一般、特殊”的教学流程,以期突破难点。首先抛出问题“这几个解你是如何求的”,

此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。

Gz85.Com小编推荐

初中数学教案模板


授課模板是我們教師工作的一部分,相信教師對於編寫授課模板也不陌生。授課模板的編撰需要考慮綜合評價和學生反饋,要如何編寫好的授課模板呢?針對這個問題,小編為大家整理了"教案課件設計指南",感謝您的閱讀,希望我們的網站能為您帶來愉悅並被您收藏!

初中数学教案 篇1

2.多项式除以单项式的运算算理.

(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

2. 本质:把多项式除以单项式转化成______________

例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.

2.会推导平方差公式,并能运用公式进行简单的运算.

难 点: 理解平方差公式的结构特征,灵活应用平方差公式.

你能用简便方法计算下列各题吗?

结论:两个数的和与这两个数的差的积,等于这两个数的平方差.

(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

计算:

(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)

(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)

2.完全平方公式的几何解释.

二、重点难点:

一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…

(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?

(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?

(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?

(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?

计算下列各式,你能发现什么规律?

(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;

(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;

(5)(a+b)2=________;(6)(a-b)2=________.

两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.

(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2

例1、应用完全平方公式计算:

(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2

例2、用完全平方公式计算:

难 点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的.

请同学们完成下列运算并回忆去括号法则.

(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)

去括号法则:

去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;

如果括号前是负号,去掉括号后,括号里的各项都要变号。

(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。

(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式

三、合作学习:

公因式与提公因式法分解因式的概念.

三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)

由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。

例1、将下列各式分解因式:

(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.

例2把下列各式分解因式:

(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.

首先找各项系数的____________________,如8和12的公约数是4.

其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.

1.写出下列多项式各项的公因式.

(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab

(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2

五、小结:

其次找各项中含有的相同的字母,相同字母的指数取次数最小的.

2、已知2x-y=1/3 ,xy=2,求2x4y3-x3y4 3、(-2)+(-2)

4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

难 点: 将单项式化为平方形式,再用平方差公式分解因式;

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.

左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.

例1、把下列各式分解因式:

(1)25-16x2; (2)9a2- b2.

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2; (2)2x3-8x.

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)?(a2-1).

一、学习目标:

1.使学生会用完全平方公式分解因式.

二、重点难点:

难点: 让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式

1.推导用完全平方公式分解因式的公式以及公式的特点.

将完全平方公式倒写:

a2+2ab+b2=(a+b)2;

a2-2ab+b2=(a-b)2.

凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解

用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.

由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.

练一练.下列各式是不是完全平方式?

(1)a2-4a+4; (2)x2+4x+4y2;

(3)4a2+2ab+ b2; (4)a2-ab+b2;

例1、把下列完全平方式分解因式:

(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.

例2、把下列各式分解因式:

(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.

(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;

1.等腰三角形的概念. 2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用.

教学重点: 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

有的三角形是轴对称图形,有的三角形不是.

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.

Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形.

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.

思考:

1.等腰三角形是轴对称图形吗?请找出它的对称轴.

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.

由此可以得到等腰三角形的性质:

1.等腰三角形的两个底角相等(简写成“等边对等角”).

2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形内角和为180°,就可求出△ABC的三个内角.

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等边对等角).

设∠A=x,则 ∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x.

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

下面我们通过练习来巩固这节课所学的知识.

Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结.

初中数学教案 篇2

一、课题引入

为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

二、课题研究

在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

在正数的.前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

三、巩固练习

例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

日期周二周三周四周五

开盘+0.16+0.25+0.78+2.12

收盘-0.23-1.32-0.67-0.65

当日收盘价

试在表中填写周二到周五该股票的收盘价.

思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

初中数学教案 篇3

掌握有理数除法法则,会进行运算;

2.了解倒数概念,会求给定有理数的倒数;

3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。

本节教学的重点是熟练进行运算,教学难点是理解法则。

1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。

2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。

1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。

2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。3.理解倒数的概念

(1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。

(2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。

(3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。

4.关于倒数的求法要注意:

(1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.(2)正数的倒数是正数,负数的倒数仍是负数.

1.了解有理数除法的定义.

2.理解倒数的意义.

3.掌握有理数除法法则,会进行运算.

1.通过有理数除法法则的导出及运算,让学生体会转化思想.2.培养学生运用数学思想指导思维活动的能力.

通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.

把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.

1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语并及时点拨,使学生主动发展思维和能力.

2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.

教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.

师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.

【教法说明】同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习.(二)探索新知,讲授新课

4×=1;×()=1;0.5×()=1;

0×()=1;-4×()=1;×()=1.

【教法说明】在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.

学生活动:通过题目0×()=1得出0乘以任何数都不得1,0没有倒数.

师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.

提出问题:根据以上题目,怎样求整数、分数、小数的倒数?

(4);(5)-5;(6)1.

学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.

2.

∴8÷(-4)=8×().

师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?

【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.

师在黑板上出示例题.

计算(1)(-36)÷9,(2)()÷().

1.计算:

(1)(-18)÷6;(2)(-63)÷(-7);(3)(-36)÷6;

(4)1÷(-9);(5)0÷(-8);(6)16÷(-3).

2.计算:

(1)()÷();(2)(-6.5)÷0.13;

(3)()÷();(4)÷(-1).

学生活动:1题让学生抢答,教师用复合胶片显示结果.2题在练习本上演示,两个同学板演(教师订正).

【教法说明】此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.

提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?

初中数学教案 篇4

初中生10分钟竞选演讲稿全新合集为范文网会员“jimmark”投稿推荐,但愿对你的学习工作带来帮助。

公开、公平、竞争、择优的人事制度给予我们每个人一个展现自我、公平竞争的机会;当前,不断发展的社会体制既给我们带来了压力,也带来了动力。下面给大家分享关于竞选演讲稿,方便大家学习。

竞选演讲稿1

尊敬的各位领导、同事们:

大家好!站在那里,应对朝夕相处的领导和同事,我心境十分激动,首先感激领导和同志们过去对我的培养和帮忙,感激各位给了我这次难得的展示自我、检验自我的机会,能够参加中储粮直属库副主任的竞聘演讲,使我有可能实现自我的人生梦想!今日我演讲的资料是:爱岗敬业,履行职责,努力争当一名优秀的中储粮直属库副主任。演讲分四方面资料:一自我介绍,二岗位认识,三竞聘优势,四工作打算。

一、自我介绍

我叫高树俊,男,汉族,1969年11月生,山西省寿阳县人,1991年9月参加工作,1993年7月加入中国共产党,大专学历,现任山西中储粮黎城直属库财务科科长。参加工作以来,我认真学习,勤奋工作,具有良好职业道德和业务技能,完成全部工作任务,取得了优异成绩,获得库领导、职工同事和广大群众的充分肯定与一致赞誉。

二、岗位认识

中储粮直属库副主任是个重要的工作岗位,要在分公司和库主任的领导下,认真努力工作,完成分公司和库布置的工作任务,取得良好工作成绩。当中储粮直属库副主任,要有坚定的政治思想觉悟和扎实的业务工作技能,按照分公司和库的工作精神与工作部署,刻苦勤奋、兢兢业业工作,完成粮食购销和财务方面的各项工作任务,力争工作的完美与高效。

三、竞聘优势

1、综合素质好。

我年纪轻,文化高,干劲足,政治素质和业务素质好,有强烈的事业心、职责感,做到忠于职守、爱岗敬业,精益求精、一丝不苟做好粮食购销和财务的每项工作,取得优异成绩。

2、工作经验丰富。

我参加中储粮直属库工作已有20多年,平时认真学习,刻苦钻研,虚心向同事、领导请教,重视经验积累和总结,注重理论和实践相结合,熟练掌握粮食购销和财务管理方面的业务技能,能够按照分公司和库的工作精神和工作部署全面做好工作,按时完成工作任务,促进库整体工作的发展。

3、组织协调本事强。

我有较强的问题处理、系统分析、理解确定、组织协调和沟通本事,能够团结同事,密切合作,共同把工作做好,促进粮食购销工作发展,为客户供给热情服务,提高中储粮直属库的形象和声誉,为加快中储粮直属库的发展打下坚实基础。

4、工作作风扎实。

我有吃苦耐劳、无私奉献、善于钻研的敬业精神和求真务实、脚踏实地、雷厉风行的工作作风,想以前的工作中,遇到无数困难险阻,我一一想法克服、时常加班加点,竭尽全力做好工作,不怕辛苦,从无怨言。我会继续发扬以前优良艰苦的工作作风,按照新时期的干部要求,紧密结合自身岗位实际,创造性、灵活性地协调、开展各项工作,保证出色完成各项工作任务。

四、工作打算

如果我竞聘中储粮直属库副主任成功,着重做好四方面工作:

1、抓好自身建设,全面提高素质。

我将努力按照政治强、业务精、善管理的复合型高素质的要求对待自我,加强政治理论与业务知识学习,全面提高自我的政治、业务素质,做到爱岗敬业、履行职责,公平公正,吃苦在前,享乐在后,努力争当一名优秀的中储粮直属库副主任,为中储粮直属库发展作贡献。

2、抓好粮食购销,提升经济效益。

我要库主任的领导下,结合自我的岗位职责,着重抓好粮食购销业务,推进中储粮直属库工作深入发展。在抓好粮食购销业务上,我要按照分公司和库的工作要求,遵循效益优先的原则,做到购得进、销得出,勤进快销,提高销售毛利率,不断增强企业盈利本事。储备粮轮换应在轮换费用补贴的基础上实现顺价销售,杜绝出现轮换亏损。我要加强粮食购销合同管理,依法签订有效的书面合同,明确合同资料,明确合同执行时间和地点,做到条款清楚、全面、职责明确,以规避合同陷阱和降低经营风险,切实维护我库的经济利益。

3、抓好财务管理,规范会计工作。

我要按照分公司和库的财务工作精神,健全完善财务管理制度,规范会计基础工作,确保会计信息的真实性,提高资金使用效率,杜绝一切不合理开支,做到增收节支。我要加强财务人员管理,提高财务人员素质,严格执行《中国储备粮管理总公司会计核算操作实务》、《会计基础工作规范》、《分公司财务管理达标考核办法》,加强财务内控监督,加强资金风险管控,杜绝违反财经纪律现象的发生,从整体上提高我库的财务管理水平,为我库可持续发展供给财务保障。

3、做好服务工作,奉献自我力量。

我上任后,把自我看作是库里的普通一兵,要开动脑筋,想方设法,搞好服务,既服务好库领导、库各个部门和库内职工,更服务好广大客户,提高工作效率和工作质量,促进我库各项工作发展,提升群众对我库工作的满意度,创造更好的经济效益。

最终,我向在座的各位领导、同事们表个态:无论我这次竞聘成功与否,我都将一如既往地继续做好我应做的工作,因为人生世上,是拼搏是奋斗,是为了给祖国和人民创造更完美的生活,这就是我参加竞聘的初衷与目的。

我的演讲完了,多谢大家!

竞选演讲稿2

各位领导、各位同学:

大家好!

我很荣幸能站在这里参加学生会主席的竞选,在此我对大家的支持表示由衷的感谢。首先,我向各位介绍一下自己:我叫_,来自_班,现任__,曾经还担任过_、_。

小时候,父亲曾对我说过:做事一定要脚踏实地,一步一个脚印的去做。”于是,我从上学期的一名普通成员到今天走上这一神圣的地方,我深感机会的来之不易,需要好好珍惜。正是由于这种动力,当我站在这里的时候,倍感自信。

当然仅仅有自信是不够的,还要有一定的能力。而从小什么都不会到今天能独立策划活动,从不会到会,从不好到好的过程,就是凭借着自信和虚心的态度来认真完成每一件工作的。

在这一年的工作中,我自觉培养了我的合作与协调能力,我能真诚的与别人合作,并且协调好同学们之间的关系,对不良行为敢于大胆管理,从不姑息纵容,因此,赢得了老师和同学们的好评。我经常从同学的角度来看待我们班干部的问题。在星期六、星期天多与同学们谈心、沟通、交流,了解他们的性格、思想、爱好,倾听他们的心声,充分的听取他们的建议、意见。我也总是试着从他们的角度来组织活动,这样班级活动也总是开展得热火朝天。但“人非圣贤,孰能无过”,我也犯过错,但我敢于面对自己的错误,从同学与老师的帮助中虚心的接受批评,并改正错误,而且决不充许自己第二次在同一地方跌倒。

今天我之所以在这里参加竞选。我希望把学生会建立成为学校领导与学生之间心灵的桥梁,成为师生的一条纽带,成为一个真正的为同学服务,同学们真正爱它的团体,同时也想锻炼一下自己的能力,给自己一个展示能力的舞台。与他人相比,我觉得自己多了一份自信,因为我是一个不服输的人,我有着一颗不折不扣的责任心和对学生会的满腔热情。 当然,我如果没有当选,我将一如继往的认真工作,并且会做的更好,全力支持新一届主席团的工作。因为我爱这个团体,因为爱,所以我要竭尽全力的去做。如果我有幸当选,我将借鉴上一届主席团的宝贵经验,进一步发扬他的光荣传统,实事求是的为同学服务,并将与风华正茂的同学,团结协作,与时俱进,大胆改革,充分发挥我们学生会应有的作用,让它成为名副其实的团体。

最后,我真诚希望大家相信我,支持我,给我这次展示能力的机会。

我将在这一片属于我们的天空中挥洒春的汗水,为校园明天绘出一幅美好的蓝图。我相信校园的明天会更加美好!

竞选演讲稿3

尊敬的各位领导,同事:

大家好!

首先感谢公司给我这个平台,展示我个人风采、个人才华,得到锻炼、走向成熟的机会,我竞聘的岗位是公司副经理职位,也许有人会问,你能胜任吗?我会坚定不移,理直气壮的回答,我能胜任,因为我热爱公交运输事业,我有一颗为事业贡献力量,挑战自我、追求上进的雄心,我将在岗位上燃文明之火,铸奉献楷模。

我叫_x,现年_岁,_族,_文化,20_年x月x日进入该公司工作,工作中能吃苦耐劳,在技能操作中能善于探索和研究总结,业务上勤学好问、精益求精、追求上进,公司领导安排的事能积极完成,当然,好的成绩已将过去,从现在起不断创造成绩才是我每一天崭新的开始和起点。

一、竞聘的理由及个人优势

我身体素质较好,性格和蔼,有一颗爱岗敬业、乐于奉献、对事业执着追求的信心和决心,尊重上级,团结同事能助人为乐,并具有一定的写作基础和较强的综合协调能力,踏踏实实做人、勤勤恳恳做事是我生活工作的宗旨。遇事能冷静、勤思考、勇于挑担子,敢于负责任;进入公司近两年来,在公司正确领导下、在同事的大力支持下,通过多次参加县上各部门的会议及负责公司安全生产管理工作,也不断积累了如何在管理层中履行职责的经验,成熟的脚步在向我一步一步迈进,对照“德、能、勤、绩”领导层考核标准,我完全可以担当和扮演我公司副经理岗位角色,并且能演好,演出特色。

二、对所竞争职位职责的认识

公交运输工作的性质是公益与利益相结合。工作任务是“安全生产、优质服务”,工作特点是“起早贪黑,事情杂,任务重”。所以我们的工作是一项与普通货运运输截然不同,是不能只顾开车,不求服务,是一项使命性较强的工作,所以,完善管理,健全制度,是公司一基本准则,驾驶人员思想作风过硬,组织纪律严密,服务理念更新,身体技能优良是我们的基本标准,只有具备这些条件,我们才能履行好我们的职责,才能体现公交运输效能和战斗力,才能圆满完成全县人民交给我们的工作任务。现在是经济高速发展、人财物和信息大流通时代,城乡之间、区域之间接触与交流日益密切,特别是私家车逐增,加之人民群众对公交车的运用认识不足,所以,推进公交运输扎实、有效、正规化建设是当前对我公司发展的必然要求,我作为一名公司职员,就必须充分认识,要怎样做有用的员,怎样增值自己,我记得董事长在会上讲过,良好的心态是高效工作的基石;完善的品格是和谐工作的先节条件,敬业奉献是优秀员工的职业基准,专业技能是实现价值的实力;做好定位才能热爱自己的岗位,经营职业生涯是稳步发展的源动力,虽然我记得不完整,但我觉得几句话对我感悟很深,记忆犹新,确实只有这样,我们才能把每件事做好,才能履行好自己的职责。

三、上岗后的工作思路

我如果能竞聘成为一名副经理,我会努力学习公交运输专业知识,不断提高自身素质,工作中做到身先士卒,率先垂范,生活中廉洁自律,勤俭持家,尊重上级,爱戴下级,服从领导,服从分工,做到政令畅通,协调好多方关系,同时凝聚全体员工,使之成为团结、和谐、心往一处想、劲往一处使,作风过硬、战斗力强的队伍,并按以下思路开展工作:

1、严抓员工思想作风建设

坚持过硬的政治纪律是队伍正规化建设的前提和保障,公交运输是一支纪律性严、人性化强的工作,每个驾驶员必须具备良好的思想情操,从我做起,严格管理、严明纪律、才是打牢全体员工认真履职的工作基石。

2、管理制度规范化

俗话说得好:“家有家规,国有国法,没有规矩不成方圆”,管理制度是队伍建设的核心内容,要确保公司工作的正常运行,就必须一套行之有效的制度作为保障,完善一系列规章制度,目的就是把人管人变为制度管人,坚持制度管理队伍,规范公司职工行为,不断推进公司的正规化建设,努力提高公司的政治效益和经济效益。

3、内务管理规范化

内务规范化工作应以公司办公环境卫生,办公用品摆放,来往顾客接待等小事做起,同时加大员工言行举止、服务质量、车辆报修报捡制度,加强业务学习,提高驾驶人员的安全意识,使之达到内务安排合理化,办公设施,着装仪表整洁化,突发事件处理及时化,制度落实规范化,做到行动统一、步调一致,工作环境优美,工作秩序良好,成本投入减少,工作效益提高,事故频率降低的工作局面。

综合上述,如我今天的竞聘成功,我会在副经理岗位上兢兢业业履行我今天的诺言,也诚恳接受上级和员工对我监督,若竞聘失败,我也不会气馁,我会一如继往地在本职岗位上奋发努力工作,请大家相信我,我的信心和决心是永恒的。

祝大家身体健康、工作顺利,谢谢大家!

竞选演讲稿4

老师同学们,大家好!

这次,我仍想竞选英语课代表。妈妈曾问我:“要不要把英语课外班停了”类似问题,我立刻说了“不”字。因为任何都阻止不了我对英语的热爱和追求英语知识的执着。

既然是英语课代表,首先要带动起一个良好,积极地学习氛围。我想,在这一点上,我一定在之前基础上再加倍努力。

我会认真对待每一次早读,包括之前,为了不让大家单词或句子读错,都是几天前提前预习好,听了一遍又一遍录音,每天练习发音,有不确定读音的单词都查阅了生词表,句子的声调也都尽力在模仿。希望大家能提前掌握课上要学的东西,使课堂更充实,顺利。好方法,我一定坚持。

我会负责的检查每一次背诵,使大家背过的同时更加熟练,保证每一次考试时粗心的小错不会出现,不会的问题越来越少。

我会耐心回答每一位同学的问题,像单词,语法不会的都可以来问我。只要我会,我就一定教给大家,直到大家明白为止。

我说到,一定做到。让那些对英语没兴趣的同学也爱上英语。Believe me,I can do it。

竞选演讲稿5

各位老师,各位同学:

大家好!在这金风送爽的季节我们迎来了新的学期,同时也迎来了学校一年一度的少先队大队干部竞选活动。

我是五年级(2)班的班长,叫石亦涵。今天我来参加大队委的竞选,我的目的只有1个:一切为大家,能为大家谋利益。我自信在同学们的帮助下,我能胜任这项工作。当我走向这个讲台之际,感到信心百倍。

我认为自己很适合担任大队干部。首先我热爱我的工作,自从成为一名小学生后,我已经连续五年当选本班的班长,这使我有了相当丰富的管理经验。我平时活泼开朗、兴趣广泛,大大小小的活动参加了不少,是学校这个平台给我提供了机会,使我如鱼得水,不断锻炼、充实着自己。此外,在活动过程中,我学习上也丝毫没有松懈,成绩在班里名列前茅,我认为我有着足够的时间和精力在学习之余开展活动。每月一次的黑板报,我和同学都是认真努力地完成,但我们一点也不觉得累,我觉得我流的每一滴汗水都是为了班级,是值得光荣、值得骄傲的。当我望着大队部设计的橱窗,自己编的黑板报,觉得很兴奋,很自豪,因为我又为班级增添了一道亮丽的风景线。

假如我能当选,我将进1步加强自身修养,努力提高和完善自身的素质,我将时时要求自己“待人正直、公正办事”;要求自己“严于律己、宽以待人”;要求自己“乐于助人、尊老爱幼”等等,总之,我要力争让大队干部的职责与个人的思想品格同时到位。

初中生10分钟竞选演讲稿全新集锦

初中数学教案 篇5

根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:

让学生掌握多边形的内角和的公式并熟练应用。

让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。

激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。

教学重点是多边形的内角和的得出和应用。

教学难点是探索和归纳多边形内角和的过程。

本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此

多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。

学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题“度量会有误差”。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。

四、教法特点及预期效果分析本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。

以上是我对《多边形的内角和》的教学设计说明。

初中数学教案 篇6

教学目标:

1、经历观察、测量、猜想等学习活动,感受、体验小数产生于生活,感受生活中处处都存在小数;

2、理解小数的意义,能说出小数各部分的名称,掌握小数的读、写方法,并正确能读写小数;

3、在合作与交流中的过程中,感受数学学习的乐趣。

教学教法:

教学方法是教学过程中师生双方为完成目标而采取的活动方式的组合。根据本课教学内容的特点和学生的思维特点,我选择了尝试法、引导发现法、等方法的优化组合。引导他们去发现问题、分析问题、解决问题、获取知识,从而达到训练思维、培养能力的目的。小数的含义是属概念教学,较为抽象、凝炼,根据学生对概念的认知,一般遵循:感知——表象——抽象概括——形成概念的这一规律。

1、从生活中了解小数,明确要用小数表示的必要性。

2、从已有的生活经验中,理解、抽象小数的意义。

3、通过观察、测量,让学生充分感受、体验小数产生于生活,从而使学生感受生活中处处都存在小数 。

4、了解小数在生活中的普遍存在及广泛运用,体验数学在身边,感受数学学习的价值和乐趣。

教学学法:

1、学会通过观察、测量、归纳,可以发现生活中处处都存在小数 。

2、引导学生自主探究,培养他们用已有知识解决新问题的能力。

3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。

1、在假期里你买了什么物品?花了多少钱?

2、老师买了一本书,同学们猜一猜要多少元?

从同学们的回答中归纳出不能用整元数表示的这种数,要用小数表示。引入课题。

这样的设计,旨在把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。

同学们都知道小数就在我们的生活中存在,那么同学们想了解小数的什么?

3、小数是怎么读的,怎么写的?

(1)象“0.1、0.3、0.9”这些小数叫1位小数。(分母是10的分数,可以写成1位小数。1位小数表示十分之几。)

(2)象“0.01、0.04、0.18”这些小数叫2位小数。(分母是100的分数,可以写成2位小数。2位小数表示百分之几。)

(3)象“0.001、0.015、0.219”这些小数叫3位小数。(分母是1000的分数,可以写成3位小数。3位小数表示千分之几。)

2、用米做单位测量同桌的高度;

3、菜市场买菜统计表。

【把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣】

2、学了小数这节课,能谈谈你知道了些什么吗?

1、从生活中记录一些小数,明天同学之间相互交流;

布置实践性的作业,使学生把小数在实际生活中的运用结合起来,体验教学就在身边,感受数学学习的乐趣。

师:同学们前几天我们栽了蒜苗,还记录了它在15天内生长情况的数据,昨天,大家把自己栽种蒜苗的数据进行了整理,制成条形统计图,举在手里,展示一下。

师:如果我们还想了解它从第3天到第15天整个的生长变化的情况,该怎么画呢?老师这有几种统计图,请你仔细观察,看哪一种更合适。(师出示条形统计图、扇形统计图、折线统计图)生任选其一。

能不能在你作的条形统计图上作一些修改或补充,把它变成这种统计图呢?

学生在小组内先讨论,再在图上试一试。

学生作图后展示,汇报作了哪些修改,表示什么意思?

师抓住学生将条形上的点连线,对比评价,选择优秀的作品,用多媒体演示由条形统计图演变为折线统计图(描点,连线)的过程

2.读趋势,

师:同学们都读出了点所表示的数量(板书数量),由点连成的线呢?

生说表示蒜苗从矮长到高的生长趋势。

读局部趋势,从第几天到第几天长得快,从第几天到第几天长得慢(板书趋势)

根据这一趋势请你估计蒜苗第10天大约长到多少厘米?

预测第20天大约长到多少厘米,并说说你的想法。

三、独立制图。

师:我们会读折线统计图了,那你会画折线统计图吗?怎么画呢?

出示笑笑蒜苗生长情况统计表,你能将它制成折线统计图么?

(1)从上图中你能说说“非典”新增病人的变化趋势吗?

(2)你能与同学说说产生这种变化趋势的原因吗?

(3)请你再提出一个数学问题,并尝试解答。

师:如果你是销售经理,根据今年销售趋势,明年你有什么打算?大约进多少?为什么?

教材内容:

教材的地位和作用这部分内容是学生已经认识了自然数,并初步认识了分数和小数的基础上,结合熟悉的生活情境,初步认识负数。通过教学,一方面可以适当拓宽学生对数的认识,激发进一步学习的愿望;另一方面也为学生在第三学段进一步理解有理数的意义以及进行有理数运算打下基础。

教学目标:

①收集生活素材来渗透负数的概念。引导学生初步理解正、负数可以表示两种相反意义的量。

②能正确地读写正数和负数,知道0既不是正数也不是负数。

③初步学会用负数表示一些日常生活中的实际问题。对正数、0、负数之间的大小有个直观的认识。

④感受数学在实际生活中的作用,培养自主探求新知的良好品质及实际应用能力。

学者分析:

本班有学生62人,大部分属于中上水平,学生已经具有一定的认知水平,他们好奇心强,具有创新和知识的迁移能力。

教学策略:

(1)通过丰富多彩的现实生活情景,帮助学生了解负数的意义。负数的产生和发展源于生活的需要。因此,教学本节课应注意为孩子们提供众多丰富的生活中的正负数现象,既让学生引起探究的兴趣,又让学生感受到数学就在生活中,体验到数学的无穷魅力和价值。

(2)借助直观手段理解相反的分界点与“0”的关系。本课的难点在于学生不容易理解负数、正数与0的关系。如何突破难点,直观教学手段是关键。这其中温度计的观察和海拔图的使用,可以有效地帮助学生逐步从直观到半直观再过渡到比较抽象地认识到它们三者之间的关系。

(3)开展有层次的探究活动,引领学生主动建构,发展学生的数学思维能力。

1、复印存折明细记录贴入,观察支出(—),存入(+),这一栏的数各表示什么意义?

{填相同还是相反}

2、上网收索今天的天气预报,记录哈尔滨,和福州的气温数据。

哈尔滨( )表示—--------------------------------------------

福州( )表示—--------------------------------------------

它们是以( )度为基准,例如:+16°表示--------------+16°表示--------------

—16°与—16°表示两个( )意义的量。

哪个地方的气温高,哪个地方的气温低?

5、收集生活中不同用法的负数,并说说表示什么?

(1)+500表示存入500,—500表示支出500,它们表示的意思是(相 反 ){填相同还是相反}

哈尔滨( —9°~~~—19° )表示—----今天气温零下9度到零下19度之间,气侯寒冷,下雪,结冰。------

福州( 11°~~~~~6° )表示—----今天气温零上11度到零上6度之间,气侯较温暖 ,看不见下雪,结冰的现象。------

它们是以( 0 )度为基准,例如:+16°表示--零上16度-----—16°表示----零下16度----

+16°与—16°表示两个(相反 )意义的量。

哪个地方的气温高,哪个地方的气温低?

带有“+”的数有------------- 叫正数 注:也可省略“+”号

带有“-”的数有------------- 叫负数 注:不可省略“—”号

+16读作-正十六-------—16读作—负十六--------

(4)0是正数还是负数?把你的思考与小组交流,讨论。然后小组汇报。

总结:0既不是正数也不是负数,它是正负数的分界点。

例如:盈利与亏选,上车人数与下车人数,地上成数与地下层数,水位升高与下降,相反方向的距离等。

学完这节学生还有疑难问题吗?,提出,由同学,小组解决,最后困难由老师及时解答。

初中数学教案 篇7

1.经历过一点、两点和不在同一直线上的三点作圆的过程.

重点:经历过一点、两点和不在同一直线上的三点作圆的过程.

难点:知道过不在同一条直线上的三个点画圆的方法.

1.过已知一个点A画圆,并考虑这样的圆有多少个?

2.过已知两个点A、B画圆,并考虑这样的圆有多少个?

3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?

让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.

得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.

不在同一直线上的三个点确定一个圆.

给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.

八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?

分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.

后备练习:

1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .

2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在

初中数学教案 篇8

一、教学案例的特点

1、案例与论文的区别

从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。

从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。

教学设计的区别

教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。

3、案例与教学实录的区别

案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。

4、教学案例的特点是

——真实性:案例必须是在课堂教学中真实发生的事件;

——典型性:必须是包括特殊情境和典型案例问题的故事;

——浓缩性:必须多角度地呈现问题,提供足够的信息;

——启发性:必须是经过研究,能够引起讨论,提供分析和反思。

二、数学案例的结构要素

从文章结构上看,数学案例一般包含以下几个基本的元素。

(地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。

(研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。

(活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。

(描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。

(过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。

三、初中数学教学案例主题的选择

新课程理念下的初中数学教学案例,可从以下六方面选择主题:

(自主探究、合作交流的教学方式;

(合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验;

(应用与拓展”的模式教学的成功经验;

(4)体现数学与信息技术整合的教学方法;

(引导者与合作者的作用;

(态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。

初中数学教案 篇9

教学目的

通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

重点、难点

1、重点:方程的两种变形。

2、难点:由具体实例抽象出方程的两种变形。

教学过程

一、引入

上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

二、新授

让我们先做个实验,拿出预先准备好的天平和若干砝码。

测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。

如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?

让同学们观察左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

高中数学教案汇集


老师在上课前需要有教案课件,只要课前把教案课件写好就可以。教案的编写需要细致入微和耐心,如何才能写出高水平的教学课件呢?我们在网络中搜寻到了一些有用的资讯“高中数学教案”,希望我的建议能够让您更加理性地看待问题!

高中数学教案【篇1】

作业批改及时、认真有特色。

作业批改“勤”,多达 67 次,全批全改。

不仅批改了作业本,改错本,而且把单元训练习题也全批全改。

在全批全改基础上给每位学生的每次作业都作有简短评语。

作文批改比较规范,有旁批、有总批、有分数。

老师作业批改较勤、次数较多。

通过布置多种形式的作业,全面关注学生,并且作文的批改详细、规范。

教师作业布置基本上均是把学科主干知识、重点内容以作业本形式上交。

教案非常详细,结合时政,有大量的文字叙述。

教案格式规范,一笔一划书写很认真,很漂亮。

拓展阅读:高中数学教学常规及检查要求

(一)计划

1.高一年级要在开学时制定详细的教学计划,要具体到每一周甚至每一天,并做到计划上墙。

2.所有教师和学生都要熟悉教学计划,确保各项工作有条不紊,优质高效。

(二)备课

1.集体备课

(1)积极实施“三步一导”的集体备课模式,即遵循先个人、后集体,再个人的顺序,并由主备教师上好先导课。要做到“一个结合”、“两个发挥”、“三定四统一”,即集体备课和个人备课相结合;发挥骨干教师的作用、发挥集体的智慧和优势;定时间、定内容、定主备人;统一进度、统一重点、统一练习题、统一单元诊断检测题。

(2)落实好每天固定时间的说课制度。必须全员参与,务必先个人备课,对备课质量要精益求精,大到每节课学习哪些知识点、采用什么样的教学方法,小到上课提问哪些问题、提问哪些层面的学生,某个知识点应该怎样进行处理,点拨这个知识点举哪些例子,选用哪些题目加以巩固等。

2.个人备课

(1)要做到“五备”、“五精”,即备课标、备考纲、备教材、备学案、备学生,精心确定教学目标,精心组织教学内容,精心编制题目,精心运用教学策略,精心优化学案。

(2)青年教师必须写出详实的`教案(详案不等于教学实录,要避免书写量过大的问题,突出强调实用性,当详则详,当略则略;要避免教学内容及知识点罗列过多、过细、过繁的现象,突出教学设计、学法指导、教后反思;要避免学法设计浅层化、简单化,注重学情分析,因材施教,突出针对性。坚决摒弃照抄教参教案的做法)。其他教师备课的形式可以灵活多样,可以是案头式、卡片式、旧案新备式等。所有教案都要把重点放在对课标和考纲的研究、重点的落实、疑难点的突破点拨上,重在设计教法,指导学法。集体备课之后,每位教师要把集体备课的成果落实到个体教案之中,从而实现教学的最优化和个性化。

(3)倡导有条件的学校采用电子备课,编写电子教案。

(三)上课

1.认真研究并贯彻落实市高中数学“三五四”教学策略中关于新授课、复习课、习题课和讲评课的要求,其中对新授课给出了三种基本模式,高一教学主要是新授课,要认真研究、实践、运用。

高中数学教案【篇2】

【考纲要求】

了解双曲线的定义,几何图形和标准方程,知道它的简单性质。

【自学质疑】

1.双曲线 的 轴在 轴上, 轴在 轴上,实轴长等于 ,虚轴长等于 ,焦距等于 ,顶点坐标是 ,焦点坐标是 ,

渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。

2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是

3.经过两点 的双曲线的标准方程是 。

4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。

5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为

【例题精讲】

1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。

2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。

3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。

【矫正巩固】

1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。

2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。

3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是

4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。

【迁移应用】

1. 已知双曲线 的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率

2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。

3. 双曲线 的焦距为

4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则

5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .

6. 已知圆 。以圆 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为

高中数学教案【篇3】

讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性。接下来是小编为大家整理的高中数学教案设计,希望大家喜欢!

高中数学教案设计一

教学目标

1。使学生掌握的概念,图象和性质。

(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。

(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。

(3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象。

2。 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。

3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。

教学建议

教材分析

(1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。

(2) 本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数 在 和 时,函数值变化情况的区分。

(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

教法建议

(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 , 等都不是。

(2)对底数 的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

教学设计示例

课题

教学目标

1。 理解的定义,初步掌握的图象,性质及其简单应用。

2。 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。

3。 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

教学重点和难点

重点是理解的定义,把握图象和性质。

难点是认识底数对函数值影响的认识。

教学用具

投影仪

教学方法

启发讨论研究式

教学过程

一。 引入新课

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。

1。6。(板书)

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

问题1:某种细胞_,由1个_2个,2个_4个,……一个这样的细胞_次后,得到的细胞_个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

由学生回答: 与 之间的关系式,可以表示为 。

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系。

由学生回答: 。

在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为。

一。 的概念(板书)

1。定义:形如 的函数称为。(板书)

教师在给出定义之后再对定义作几点说明。

2。几点说明 (板书)

(1) 关于对 的规定:

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在。

若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定 且 。

(2)关于的定义域 (板书)

教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 。扩充的另一个原因是因为使她它更具代表更有应用价值。

(3)关于是否是的判断(板书)

刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。

(1) , (2) , (3)

(4) , (5) 。

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象。

最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

3。归纳性质

作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

函数

1。定义域 :

2。值域:

3。奇偶性 :既不是奇函数也不是偶函数

4。截距:在 轴上没有,在 轴上为1。

对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于 轴上方,且与 轴不相交。)

在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少。

此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线。

二。图象与性质(板书)

1。图象的画法:性质指导下的列表描点法。

2。草图:

当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例。

此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是的方法,而图象变换的方法更为简单。即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象。

最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)

由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:

以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

填好后,让学生仿照此例再列一个 的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

3。性质。

(1)无论 为何值, 都有定义域为 ,值域为 ,都过点 。

(2) 时, 在定义域内为增函数, 时, 为减函数。

(3) 时, , 时, 。

总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。

三。简单应用 (板书)

1。利用单调性比大小。 (板书)

一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。

例1。 比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与1 。(板书)

首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。

解: 在 上是增函数,且

教师最后再强调过程必须写清三句话:

(1) 构造函数并指明函数的单调区间及相应的单调性。

(2) 自变量的大小比较。

(3) 函数值的大小比较。

后两个题的过程略。要求学生仿照第(1)题叙述过程。

例2。比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与 。(板书)

先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)

最后由学生说出 >1,。

解决后由教师小结比较大小的方法

(1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)

(2) 搭桥比较法: 用特殊的数1或0。

三。巩固练习

练习:比较下列各组数的大小(板书)

(1) 与 (2) 与 ;

(3) 与 ; (4) 与 。解答过程略

四。小结

1。的概念

2。的图象和性质

3。简单应用

五 。板书设计

高中数学教案设计二

《椭圆》

一、教材分析

(一)教材的地位和作用

本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

(二)教学重点、难点

1.教学重点:椭圆的定义及其标准方程

2.教学难点:椭圆标准方程的推导

(三)三维目标

1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

2.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。

_

 3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。

二、教学方法和手段

采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。

“授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

三、教学程序

1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。

6.例题讲解:通过例题规范学生的解题过程。

7.巩固练习:以多种题型巩固本节课的教学内容。

8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。

9.课后作业:面对不同层次的学生,设计了必做题与选做题。

10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

四、教学评价

本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

高中数学教案设计三

课题:指数与指数幂的运算

课型:新授课

教学方法:讲授法与探究法

教学媒体选择:多媒体教学

指数与指数幂的运算——学习者分析:

1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础.

2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入.

指数与指数幂的运算——学习任务分析:

1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值.

2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化.

3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算.

指数与指数幂的运算——教学目标阐明:

1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化.

2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力.

3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面.

教学流程图:

指数与指数幂的运算——教学过程设计:

一.新课引入:

(一)本章知识结构介绍

(二)问题引入

1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P与死亡年数t之间的关系:

(1)当生物死亡了5730年后,它体内的碳14含量P的值为

(2)当生物死亡了5730×2年后,它体内的碳14含量P的值为

(3)当生物死亡了6000年后,它体内的碳14含量P的值为

(4)当生物死亡了10000年后,它体内的碳14含量P的值为

2.回顾整数指数幂的运算性质

整数指数幂的运算性质:

3.思考:这些运算性质对分数指数幂是否适用呢?

【师】这就是我们今天所要学习的内容《指数与指数幂的运算》

【板书】2.1.1指数与指数幂的运算

二.根式的概念:

【师】下面我们来看几个简单的例子.口述平方根,立方根的概念引导学生总结n次方根的概念..

【板书】平方根,立方根,n次方根的符号,并举一些简单的方根运算,以便学生观察总结.

【师】现在我们请同学来总结n次方根的概念..

1.根式的概念

【板书】概念

即如果一个数的n次方等于a(n>1,且n∈N_,那么这个数叫做a的n次方根.

【师】通过刚才所举的例子不难看出n的奇偶以及a的正负都会影响a的n次方根,下面我们来共同完成这样一个表格.

【板书】表格

【师】通过这个表格,我们知道负数没有偶次方根.那么0的n次方根是什么?

【学生】0的n次方根是0.

【师】现在我们来对这个符号作一说明.

例1.求下列各式的值

【注】本题较为简单,由学生口答即可,此处过程省略.

三.n次方根的性质

【注】对于1提问学生a的取值范围,让学生思考便能得出结论.

【注】对于2,少举几个例子让学生观察,并起来说他们的结论.

1.n次方根的性质

四.分数指数幂

【师】这两个根式可以写成分数指数幂的形式,是因为根指数能整除被开方数的指数,那么请大家思考下面的问题.

思考:根指数不能整除被开方数的指数时还能写成分数指数幂的形式吗

【师】如果成立那么它的意义是什么,我们有这样的规定.

(一)分数指数幂的意义:

1.我们规定正数的正分数指数幂的意义是:

2.我们规定正数的负分数指数幂的意义是:

3.0的正分数指数幂等于0,0的负分数指数幂没有意义.

(二)指数幂运算性质的推广:

五.例题

例2.求值

【注】此处例2让学生上黑板做,例3待学生完成后老师在黑板板演,例4让学生黑板上做,然后纠正错误.

六.课堂小结

1.根式的定义;

2.n次方根的性质;

3.分数指数幂.

七.课后作业

P59习题2.1A组1.2.4.

八.课后反思

1.在第一节课的时候没有把重要的内容写在黑板上,而且运算性质中a,r,s的条件没有给出,另外课件中有一处错误.第二节课时改正了第一节课的错误.

2.有许多问题应让学生回答,不能自问自答.根式性质的思考没有讲清楚,应该给学生更多的时间来回答和思考问题,与之互动太少.

3.讲课过程中还有很多细节处理不好,并且讲课声音较小,没有起伏.

4.课前的章节知识结构很好,引入简单到位,亮点是概念后的表格.

高中数学教案【篇4】

教师资格证高中数学教案模板向量

资料仅供参考

1本节内容在全书及各章节的状态:

“向量”出现在高中数学第 1 卷(第 2 部分)第 5 章第 1 节。本节内容是传统意义上“平面解析几何”的基础部分,因此在“数学”学科中占有极其重要的地位。

2 数学思维方法分析:

(1)从“向量可以用有向线段表示”所体现的“数”和“形”的变换,可以看“数学”本身的“量化”和“物化”。

(2)从构造手段的角度,在教材提供的材料中,我们可以看到“数与形相结合”的思想。

二、教学目标

根据上述教材结构和内容分析,考虑到学生现有认知结构的心理特点,制定如下教学目标:

1 基础知识目标:掌握“向量”的概念及其表示,并能用它们解决相关问题。

信息仅供参考

2能力培养目标:逐步培养学生观察、分析、综合、类比的能力,准确阐述自己的想法和观点,重点突出关于培养学生的理解认知和元认知能力。

3 创新品质的目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合意识; “向量”的教学旨在培养学生的“知识重组”和“数字形成”意识。

4 人格品质目标:培养学生勇于探索、善于发现、独立意识、不断超越自我的创新品质。

三、教学重点、难点、重点

重点:向量概念的引入。

难点:“数”与“形”的完美结合.

重点:本课着重通过“数与形的结合”培养和发展学生的认知能力和灵活性。

4.教材处理

4.教材处理

strong>

资料仅供参考

建构主义学习理论认为建构是认知结构的形成,其过程一般是先将知识点按逻辑顺序串成知识线线索和内部联系,然后由几条知识线形成一个知识平面,最后形成一个综合体知识面根据其内容、性质、功能、因果等。为什么在本课中提出“数形组合”?应该说,这种处理方法是基于这一理论的体现。其次,本课的过程力求解决以下问题:知识是如何产生的?它是如何发展的?如何从实际问题抽象到数学问题,并赋予抽象的数学符号和表达方式,如何体现生活中客观事物之间的简单和谐关系。

V.教学模式

教学过程是一个非常复杂和动态的教师活动和学生活动的整体。集体意识的过程。教为导,学为主体,互为客体。启动学生自主学习,启发和引导学生实践数学思维的过程,获取知识,发现规律,理解原理,积极发展思维和能力。

六。学习方法

1.让学生在认知过程中专注于掌握元认知过程。

2.让学生将独立思考与多方沟通结合起来。

信息仅供参考

7.教学程序和假设

(1)设置问题,创建场景。

1.提问:在我们的日常生活中,我们不仅会遇到大小不一的数量,还经常会接触到带有方向的数量。这些量应该如何表达呢?

2. (在学生讨论的基础上,教师指导) 回忆“力的图形”后,分析力的作用点的大小、方向、作用点 重点分析力的作用点对运动的相对和绝对影响.

设计意图:

1.将教材内容转化为具有潜在意义的问题,让学生对问题有强烈的意识,学生的整个学习过程就会变成“猜”、“吃”、“糊”、“烦恼”、“忐忑”、“期待”。寻找理由和论据的过程。

2.我们知道,学习总是与一定的知识背景或情境有关。 在实际情境中学习使学生能够利用他们现有的知识和经验来吸收和索引他们当前正在学习的新知识。由此获得的知识不仅易于维护,而且易于转移到不熟悉的问题情境中。

(2)提供真实的背景材料,形成假设。

信息仅供参考

1.船以 /s 的速度航行。众所周知,一条河流长 m,宽 150m。船到对岸需要多长时间?

2.到达彼岸?这句话的实质含义是什么? (学生讨论并期望回答:参考文献未知。)

3.如何将实际问题抽象为数学问题? (同学们交流讨论,期待回答:要确定一个量,有时除了知道它的大小,还要知道它的方向。)

设计意图:

1.教师站在学生智力发展略超前(即思维最近发展)的边界,通过问题引导问题,促进学生“数形结合”思维的形成。

2.学生交流讨论后,将实际问题抽象为数学问题,并给出抽象的数学符号和表示。

(3)引导探索,寻找解决方案。

1.如何补充以上问题?从我们学到的知识中,我们必须增加“方向”的要求。

信息仅供参考

2.导向的本质是什么?也就是说,位移的本质是什么?预期答案:大小和方向的统一。

3.零向量、单位向量、平行向量、等向量、共线向量等序列化概念有什么关系? (重点明确。)

设计意图:

在老师的指导下,在积累现有探索经验的基础上,学生们讨论交流,评价每一个其他,共同完成了“数形结合”的心理建设。

2.本题旨在让学生不只“只看书”,敢于并善于质疑、批评和超越书本和老师。这是一种创新素质的突出表现,它使学生不满足于现状,执着追求。

3.尽可能揭示认知思维方法的全貌,让学生从整体上把握解决问题的方法。

(4)总结结论,加强理解。

经过指导,同学们总结出“数与形结合”的思路——“数”和“形”是同一个问题的两个方面。 “数”的性质。

信息仅供参考

设计意图:促进学生数学思维方法的形成,引导学生掌握“数与形相结合”的思维方法.

(5)变体扩展与重构。

教师指导:这里我们已经知道,如果我们要解决一些抽象的数学问题,可以借助图形来解决,这是向量的理论基础。

下面我们继续学习一些与向量相关的概念,并引导学生使用模型演示进行观察。

概念一:长度为0的向量称为零向量。

概念2:长度等于单位长度的向量称为单位向量。

概念3:具有相同或相反方向的非零向量称为平行(或共线)向量。 (规定:零向量与任意向量平行。)

概念4:长度相同、方向相同的向量称为等向量。

设计意图:

材料仅供参考

1.学生在教师的指导下,在积累已有探索经验的基础上进行研究。讨论交流,互相评价,共同完成有向线段与向量关系的构建。

2.通过这些概念的比较,可以使学生加强对“矢量”概念的理解,从而更好地“结合数字和形状”。

3。让学生对教学思想方法及其对应的情境有更熟练的认识,并将这种认识和思维储存在大脑中,随时提取应用。

(6)总结反馈调整。

1.知识内容:

比如设O为正六边形A B C D E F的中心,分别写出图形和向量O A ,O B、O C 是相等的向量。

2.运用数学思维方法培养创新素质总结:

善于发现现实生活中的问题,从而提炼出相应的解数学题。发现,作为一种意识,可以解释为“探索问题的意识”;作为一种能力,发现可以解释为“发现新事物”的能力,是培养创造力的基本途径。

信息仅供参考

b.解决问题采用了“数与形相结合”的数学思想,体现了数学思维方法是解决问题的根本途径。

C.探索问题变体的过程是创新思维活动过程中的多维整合过程。知识重组的过程是一个多维度的整合过程,是一个高层次的知识综合过程,是对课本知识在更高层次上的概括和总结,有利于形成一种开放的、动态的、具有较强自学能力的知识。再生。系统,使思维具有整体功能和创新能力。

2.设计意图:

1.对知识内容的总结可以使课堂教学所传授的知识尽快转化为学生的知识。质量。

2.总结运用数学方法的创新素质,可以使学生更系统、更深刻地认识数学思维方法在解决问题中的地位和作用,逐步培养学生良好的人格品质。 这是每节课的重要组成部分。

(7)布置作业。

反馈“数形组合”探索过程,梳理知识体系,完成习题内容。

高中数学教案【篇5】

加强集体备课

优化课堂教学

新的高考形势下,高三数学怎么去教,学生怎么去学

无论是教师还是学生都感到压力很大,针对这一问题备课组在学校和年级部的领导下,在姚老师和高老师以及笪老师的的具体指导下,制定了严密的教学计划,提出了优化课堂教学,强化集体备课,培养学生素质的具体要求。即优化课堂教学目标,规范教学程序,提高课堂效率,全面发展,培养学生的能力,为其自身的进一步发展打下良好的基础。

在集体备课中我们几位数学老师团结协作,发挥集体力量。

高三数学备课组,在资料的征订,测试题的命题,改卷中发现的问题交流,学生学习数学的状态等方面上,既有分工又有合作,既有统一要求又有各班实际情况,既有"学生容易错误"地方的交流又有典型例子的讨论,既有课例的探讨又有信息的交流。在任何地方,任何时间都有我们探讨,争议,交流的声音。集体备课后,各位教师根据自己班级学生的具体情况进行自我调整和重新精心备课,这样,总体上,集体备课把握住了正确的方向和统一了教学进度,对于各位教师来讲,又能发挥自己的特长,因材施教。

立足课本

夯实基础

高考复习,立足课本,夯实基础。复习时要求全面周到,注重教材的科学体系,打好"双基",准确掌握考试内容,做到复习不超纲,不做无用功,使复习更有针对性,细心推敲对高考内容四个不同层次的要求,准确掌握那些内容是要求了解的,那些内容是要求理解的,那些内容是要求掌握的,那些内容是要求灵活运用和综合运用的;细心推敲要考查的数学思想和数学方法;在复习基础知识的同时要注重能力的培养,要充分体现学生的主体地位,将学生的学习积极性充分调动起来,教学过程中,不仅要展现教师的分析思维,还要充分展现学生的思考思维,把教学活动体现为思维活动;同时还适当增加难度,教学起点总体要高,注重提优补差,新高考将更加注重对学生能力的考查,适当增加教学的难度,为更多优秀的学生脱颖而出提供了更多的机会和空间,有利于优秀的学生最大限度发挥自己的潜能,取得更好的成绩;对于差生充分利用辅导课的时间帮助他们分析学习上存在的问题,解决他们学习上的困难,培养他们学习数学的兴趣,激励他们勇于迎接挑战,不断挖掘潜力,最大限度提高他们的数学成绩。

因材施教

全面提高

我今年带得是一个文科,一个理科班。因此学生的整体情况不一样,同一班级的学生,层次差别也较大,给教学带来很大的难度,这就要求我从整体上把握教学目标,又要根据各班实际情况制定出具体要求,对不同层次的学生,应区别对待,这样,对课前预习,课堂训练,课后作业的布置和课后的辅导的内容也就因人而异,对不同班级,不同层次的学生提出不同的要求。在课堂提问上也要分层次,基础题一般由学生来做,以增强他们的信心,提高学习的兴趣,对能力较强的学生要把知识点扩展开来,充分挖掘他们的潜力,提高他们逻辑思维能力和分析问题,解决问题的能力。课后作业的布置,既有全体学生的必做题也有针对较强能力的学生的思考题,教师在课后对学生的辅导的内容也因人而异,让所有的学生都能有所收获,使不同层次的学生的能力都能得到提高。掌握学情,做到有的放矢。

深入学生中去了解学生的实际学习情况,学习水平和学习能力,及时调整教学内容和课堂容量,提前渗透数学思想方法,使教师的教和学生的学都是符合学生的学习实际情况,做到了有的放矢,让每一位同学在课堂学习中得到属于自己的收益。

优化练习

提高练习的有效性

知识的巩固,技能的熟练,能力的提高都需要通过适当而有效的练习才能实现;首先,练习题要精选,题量要适度,注意题目的典型性和层次性,以适应不同层次的学生;对练习要全批全改,做好学生的错题统计,对于错的较多的题目,找出错的原因。练习的讲评是高三数学教学的。一个重要的环节,为了最大限度地发挥课堂教学的效益,课堂的讲评要科学化,要注重教学的效果,不该讲的就不讲,该点拨的要点拨,该讲的内容一定要讲透;对于典型问题,要让学生板演,充分暴露学生的思维过程,加强教学的针对性。多做限时练习,有效的提高了学生的应试能力

.

加强应试指导

培养非智力因素

充分利用每一次练习,测试的机会,培养学生的应试技巧,提高学生的得分能力,如对选择题,填空题,要注意寻求合理,简洁的解题途经,要力争"保准求快",对解答题要规范做答,努力作到"会而对,对而全",减少无谓失分

,指导学生经常总结临场时的审题答题顺序,技巧,总结考前和考场上心理调节的做法与经验,力争找到适合自己的心理调节方式和临场审题,答题的具体方法,逐步提高自己的应试能力;帮助学生树立信心,纠正不良的答题习惯,优化答题策略,强化一些注意事项。注重"三点",培养学习习惯。

高三复习注意到低起点,重探究,求能力的同时,还注重抓住分析问题,解决问题中的信息点,易错点,得分点,培养良好的审题,解题习惯,养成规范作答,不容失分的习惯。

以上是我们

备课组在上学期的一些具体做法,也可以说是我们

的一些有益的经验。

高中数学课教案 高三数学教案全套篇五

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

四、教学目标

1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3.借助多媒体辅助教学,激发学习数学的兴趣。

五、教学重点与难点:

教学重点

1.对圆锥曲线定义的理解

2.利用圆锥曲线的定义求“最值”

3.“定义法”求轨迹方程

教学难点:

巧用圆锥曲线定义解题

六、教学过程设计

【设计思路】

(一)开门见山,提出问题

一上课,我就直截了当地给出——

例题1:(1) 已知a(-2,0), b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是( )。

(a)椭圆 (b)双曲线 (c)线段 (d)不存在

(2)已知动点 m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是( )。

(a)椭圆 (b)双曲线 (c)抛物线 (d)两条相交直线

【设计意图】

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

【学情预设】

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2

5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|

5

入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。

(二)理解定义、解决问题

例2 (1)已知动圆a过定圆b:x2y26x70的圆心,且与定圆c:xy6x910 相内切,求△abc面积的最大值。

(2)在(1)的条件下,给定点p(-2,2), 求|pa|

【设计意图】

运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

【学情预设】

根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点a的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

(三)自主探究、深化认识

如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会——

练习:设点q是圆c:(x1)2225|ab|的最小值。 3y225上动点,点a(1,0)是圆内一点,aq的垂直平分线与cq交于点m,求点m的轨迹方程。

引申:若将点a移到圆c外,点m的轨迹会是什么?

【设计意图】 练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

可借助“多媒体课件”,引导学生对自己的结论进行验证。

高中数学教案【篇6】

知识技能:初步了解分散系概念;初步认识胶体的概念,鉴别及净化方法;了解胶体的制取方法。

能力培养:通过丁达尔现象、胶体制取等实验,培养学生的观察能力、动手能力,思维能力和自学能力。

科学思想:通过实验、联系实际等手段,激发学生的学习兴趣。

重点:胶体的有关概念;学生实验能力、思维能力、自学能力的培养。

【展示】氯化钠溶液、泥水悬浊液、植物油和水的混合液振荡而成的乳浊液。

【提问】哪种是溶液,哪种是悬浊液、乳浊液?

思考:

(1)分散系、分散质和分散剂概念。

(2)溶液、悬浊液、乳浊液三种分散系中的分散质分别是什么?

【提问】溶液、悬浊液、乳浊液三种分散系有什么共同点和不同点?

观察、辨认、回答。

阅读课本,找出三个概念。

(1)分散系:一种物质(或几种物质)分散到另一种物质里形成的混合物。

(2)溶液中溶质是分散质;悬浊液和乳浊液中的分散质分别是:固体小颗粒和小液滴。

思考后得出结论:

共同点:都是一种(或几种)物质的微粒分散于另一种物质里形成的混合物。

复习旧知识,从而引出新课。

培养自学能力,了解三个概念。

培养学生归纳比较能力,了解三种分散系的异同。

【展示】氢氧化铁胶体,和氯化钠溶液比较。

【提问】两者在外部特征上有何相似点?

【设问】二者有无区别呢?

【指导实验】(投影)用有一小洞的厚纸圆筒(直径比试管略大些),套在盛有氢氧化铁溶胶的试管外面,用聚光手电筒照射小孔,从圆筒上方向下观察,注意有何现象,用盛有氯化钠溶液的试管做同样的实验,观察现象。

【小结】丁达尔现象及其成因,并指出能发生丁达尔现象的是另一种分散系――胶体。

不同点:溶液中分散质微粒直径小于10-9m,是均一、稳定、透明的;浊液中分散质微粒直径大于10-7m,不均一、不稳定,悬浊液静置沉淀,乳浊液静置易分层。

分组实验。

观察实验现象。

现象:光束照射氢氧化铁溶胶时产生一条光亮的“通路”,而照射氯化钠溶液时无明显现象。

培养观察能力,引起学生注意,激发兴趣。

培养学生动手能力,观察能力。

【设问】通过以上的实验,我们知道胶体有丁达尔现象,而溶液没有。那么,二者本质区别在什么地方呢?

【设问】这个实验说明什么问题?

【小结】1.分子、离子等较小微粒能透过半透膜的微孔,胶体微粒不能透过半透膜,溶液和胶体的最本质区别在于微粒的大小,分散质微粒的直径大小在10-9~10-7m之间的.分散系叫做胶体。从而引出胶体概念。

观察实验,叙述现象。

现象:在加入硝酸银的试管里出现了白色沉淀;在加入碘水的试管里不发生变化。

思考后回答:氯化钠可以透过半透膜的微孔,而淀粉胶体的微粒不能透过。

创设问题情境,激发兴趣。

培养思维能力。

【提问】在日常生活中见到过哪些胶体?

讨论,回答:淀粉胶体、土壤胶体、血液、云、雾、Al(OH)3胶体等等。

【指导阅读】课本第74页最后一行至第75页第一段,思考胶体如何分类?

看书自学,找出答案。

了解胶体分类。

【指导实验】强调:1.制备上述胶体时要注意不断搅拌,但不能用玻璃棒搅拌,否则会产生沉淀。2.在制取硅酸胶体时,一定要将1mL水玻璃倒入5mL~10mL盐酸中,切不可倒过来倾倒,否则

会产生硅酸凝胶。

【提问】如何证实你所制得的是胶体?请你检验一下你所制得的氢氧化铁胶体。

分组实验:

用烧杯盛约30mL蒸馏水,加热到沸腾,然后逐滴加入饱和氯化铁溶液,边加边振荡,直至溶液变成红褐色,即得氢氧化铁胶体。

在一个大试管里装入5~10mL1mol/L盐酸,并加入1mL水玻璃,然后用力振荡,即得硅酸溶胶。

在一个大试管里注入0.01mol/L碘化钾溶液10mL,用胶头滴管滴入8~10滴相同浓度的硝酸银溶液,边滴加边振荡,即得碘化银胶体。

思考后回答,胶体可产生丁达尔现象,然后检验。

培养学生实验能力。

培养学生严谨求实,一丝不苟的科学态度。

使学生亲自体验成功与失败,激发兴趣。

【提问】请学生写出制取三种胶体的化学方程式,请一个同学写在黑板上,然后追问:这个同学书写是否正确?

高中数学教案【篇7】

高中数学教案

精选高中数学教资面试教案两篇

第一篇《函数的单调性》

1.题目:函数的单调性

2.内容:

3.基本要求

(1)试讲时间约10分钟;

(2)创设问题进行导入,建立与已学知识之间的联系;

(3)采用恰当的教学方法,让学生直观感受数形结合思想。

4.考核目标:教学设计,教学方法,教学实施。

课时:

1课时

课型:

新授课

教学目标:

1、知识与技能:从形与数两方面理解单调性的概念,初步学会利用函数图象和单调性定义判断、证明函数单调性的方法。

2、过程与方法:通过对函数单调性定义的探究,提高观察、归纳、抽象的能 力和语言表达能力;通过对函数单调性的证明,提高推理论证能力,体验数形结合思想方法。

3、情感态度价值观:通过知识的探究过程养成细心观察、认真分析、严谨论证的良好思维习惯;感受用辩证的观点思考问题。

教学重点:

函数单调性的概念形成和初步运用。

教学难点:

函数单调性的概念形成。

教学过程:

(一)创设情境,导入新课

教师活动:分别作出函数y=2x,y=-2x和y=x2+1的图象,并且观察函数变化规律,描述前两个图象后,明确这两种变化规律分别称为增函数和减函数。 然后提出两个问题:问题一:二次函数是增函数还是减函数?问题二:能否用自己的理解说说什么是增函数,什么是减函数?

学生活动:观察图象,利用初中的函数增减性质进行描述,y=2x的图象自变量x在实数集变化时,y随x增大而增大,y=-2x的图象自变量x在实数集变化时,y随x增大而减小。在此基础上描述y=x2+1在(-∞,0]上y随x增大而减小,在(0,+∞)上y随x增大而增大。理解单调性是函数的局部性质,在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。

设计意图:数学课程标准中提出“通过已学过的函数特别是二次函数理解函数的单调性”,因此在本环节的设计上,从学生熟知的一次函数和二次函数入手,从初中对函数增减性的认识过渡到对函数单调性的直观感受。通过一次函数认识单调性,再通过二次函数认识单调性是局部性质,进而完善感性认识。

(二)初步探索,形成概念

教师活动:(以y=x2+1在 (0,+∞)上单调性为例)让学生理解如何用精确的数

学语言(随着、增大、任取)来描述函数的单调性,进而得到增(减)函数的定义。并进一步提出如何判断的问题。

1 / 4

高中数学教案

学生活动:通过交流、提出见解,提出质疑,相互补充理解函数定义的解释,讨论表示大小关系时,理解如何取值,明白任取的意义。

设计意图:通过启发式提问,实现学生从“图形语言”到“文字语言”到“符号语言”认识函数的单调性,实现“形”到“数”的转换。

(三)概念深化,延伸扩展

教师活动:提出下面这个问题:能否说f(x)=在它的定义域上是减函数?从这个例子能得到什么结论?并给出例子进行说明:

进一步提问:函数在定义域内的两个区间A,B上都是增(减)函数,何时函数在A∪B上也是增(减)函数,最后再一次回归定义,强调任意性。

学生活动:思考、讨论,提出自己观点,并提出反例,如x1=-1,x2=1,进而得出结论:函数在定义域内的两个区间A,B上都是增(减)函数,函数在A∪B上不一定是增(减)函数将函数图象进行变形(如x

设计意图:通过上面的问题,学生已经从描述性语言过渡到严谨的数学语言。而对严谨的数学语言学生还缺乏准确理解,因此在这里通过问题深入研讨加深学生对单调性概念的理解。

(四)证明探究,应用定义

教师活动:展示例题

例1:证明函数在(0,+)上是增函数

证明:任取且

∴函数在(0,+)上是增函数。

进一步提问:如果把(0,+∞)条件去掉,如何解这道题?要求学生课后思考。

学生活动:根据单调性定义进行证明、讨论,规范出证明步骤:设元、作差、变形、断号、定论,理解根据定义进行判断,体会判断可转化成证明并完成课后思 考题。

设计意图:本环节是对函数单调性概念的准确应用,本题采用前面出现过的函数,一方面希望学生体会到函数图象和数学语言从不同角度刻画概念,另一方面避免学生遇到障碍,而是把注意力都集中在单调性定义的应用上。课标中指出“形式化是数学的基本特征之一,但不能仅限于形式化的表达。高中课程强调返璞归真”因此本题不再从证明角度,而是让学生再次从定义出发,寻求方法,并体会转化思想。

(五)小结评价,作业创新

教师活动:从知识、方法两个方面引导学生进行总结,留出如下的课后作业(1、2、4必做,3选做):

1、证明:函数在区间[0,+∞)上是增函数。

2、课上思考题

3、求函数的单调区间

4、思考P46 探索与研究

学生活动:回顾函数单调性定义的探究过程、证明、判断函数单调性的方法步骤和数学思想方法,完成课后作业。

设计意图:使学生对单调性概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义,并且作业实现分层,满足学生需求。

六、板书设计

第二篇《函数的奇偶性》

1.题目:函数的奇偶性

2.内容:

2 / 4

高中数学教案

3.基本要求:

(1)试讲时间约10分钟;

(2)通过问题设计,联系学生已有知识经验探索新知识;

(3)设计一些基础性例题,以帮助学生理解函数奇偶性的主要特征。

4.考核目标:问题设计,知识归纳,教学实施。

教学设计

课时:

1课时

课型:

新授课

教学目标:

1、知识与技能目标:理解函数的奇偶性及其几何意义。

2、过程与方法目标:经历从图形直观感知到代数抽象概括,从特殊到一般的概念形成过程,培养学生观察、抽象的能力。

3、情感、态度与价值观目标:通过自主探索,体会数形结合的思想,感受数学的对称美。

教学重点:

理解函数的奇偶性及其几何意义。

教学难点:

判断函数奇偶性的方法。

教学准备:多媒体

教学过程:

一、图片展示,引入新课

多媒体展示喜字、蝴蝶、扑克牌、交通标志四幅图片,请学生观察这些图片具有什么样的共同特征。

通过观察,老师适当引导,学生能够发现前两幅图是轴对称的,后两幅图是中心对称的。

继续追问数学中这样的对称,请学生举例说明。由于前几节课都在学习函数,会有部分学生想到有些函数的图像是对称的。

引入课题:今天我们一起来研究图像具有对称特征的函数的性质——奇偶性

二、合作探索,学习新知

1.观察下列函数的图像:说明图像有什么样的特点。

思考1:这两个函数的图像有何共同特征?

思考2:对于上述两个函数,f(1)与f(-1),f(2)与f(-2),f(a)与f(-a)有什么关系?

一般地,若函数y=f(x)的图象关于y轴对称,当自变量x任取定义域中的一对相反数时,对应的函数值相等。即f(-x)=f(x) 思考3:怎样定义偶函数?

学生先进行独立思考,然后小组讨论形成小组结论,最后展示本组讨论结果。

师生互动将学生得到的定义进行补充完善最终得到精确的偶函数的定义:设函数f(x)的定义域为D,如果对D内的任意一个数X,都有,且,则这个函数叫做偶函数。 练习:判断下列函数是否为偶函数?(口答)

2.观察下面两个函数的图像,回答以下问题。

问题1:观察图像,从对称的角度思考,它们有什么共同特征?

问题2:分别求当自变量x=±1, ±2时的函数值,从中你能发现什么规律?

问题3:是否对于定义域内所有的x,都有类似的情况?

问题4:类比偶函数的定义给出奇函数的定义。

3 / 4

高中数学教案

学生先进行独立思考后,小组内进行交流,形成小组最后结论,最终展示本组成果。

小组代表展示结果后,师生互动得出奇函数的定义:设函数f(x)的定义域为D,如果对D内的任意一个数X,都有,且,则这个函数叫做偶函数。 练习:判断下列函数是否为偶函数?(口答)

3.强化定义,深化内涵

对奇函数、偶函数定义的说明:

(1)如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x),具有奇偶性。

(2)函数具有奇偶性的前提是:定义域关于原点对称。

(3)若f(x)为奇函数,则f(-x)=-f(x)成立;若f(x)为偶函数,则f(-x)=f(x)成立。

三、讲练结合,巩固提升

例1.利用定义判断下列函数的奇偶性

小结:用定义判断函数奇偶性的步骤: :

(1)先求定义域,看是否关于原点对称;

(2)再判断f(-x)与f(x)的关系;

(3)若f(-x)=f(x)则f(x)是偶函数;若f(-x)=-f(x),则f(x)是奇函数。

例题2:利用定义判断下列函数的奇偶性

四、总结升华

师生一起回顾函数奇偶性的定义,图像性质,已经如何判断一个函数的奇偶性。

五、布置作业

1.教材42页习题

2.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+1,求x板书设计:

函数的奇偶性

偶函数:

奇函数:

判断函数奇偶性步骤: 一看

二找

三判断

4 / 4

高中数学教案【篇8】

一 教材分析:

本节课是高中数学人教B版必修一2.1.4的内容,是学生在学习了函数、轴对称和中心对称图形的基础上来学习的,函数的奇偶性是考察函数性质时的又一个重要方面。教材从具体到抽象,从感性到理性,循序渐进地引导学生进入数学领域进行观察、归纳,形成函数奇偶性概念。同时渗透数形结合,从特殊到一般的数学思想。

二、确立教学目标

(1)知识目标:从形和数两个方面进行引导,使学生理解奇偶性的概念,学会利用定义判断简单函数的奇偶性。

(2)能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊到一般的数学思想方法.

(3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。 .教学重点:函数奇偶性概念的形成

教学难点:函数奇偶性的判断

三、 说教法和学法

1、教法

根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、设疑诱导法、类比法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

2、学法 让学生在“观察一归纳一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。

四、教学程序设计:

为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:

(一)设疑导入,观图激趣。(二)指导观察,形成概念。(三)学生探索、发展思维。

(四)知识应用,巩固提高。(五)归纳小结,布置作业。

五、说课过程:

(一)设疑导入、观图激趣。

1、用多媒体展示一组图片,让学生感受生活中的美:对称美,再让学生举例。

通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为新知作好铺垫。

(二)指导观察、形成概念。 数学中对称的形式也很多,这节课我们就同学们谈到的与轴对称的函数展开研究。 先思考一个问题:哪些函数的图象关于轴对称?试举例。

然后以函数f(x)=x2和f(x)=︱x︱为例,学生动手作出图像,让学生回想,初中时怎样判断图象关于

轴对称呢? 此时提出研究方向: 今天我们将从数值角度研究图象的这种

特征,体现在自变量与函数值之间有何规律?

引导学生先把它们具体化,再用数学符号表示.借助课件演示(令

得出等式 比较

, 再令

,得到

) 让学生发现两个函数的对称性反应到函数值上具有的特性:,然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立.最后让学生用完整的语言给

出偶函数定义,不准确的地方教师予以提示或调整.

(1) 偶函数的定义:(板书)

设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D 且

f(-x)=f(x),那么f(x)就叫做偶函数.

接着提出新问题:

函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?然后多媒体展示两个学生非常熟悉的函数 f(x)?x和f(x)?1

x的图象让学生观察研究。

引导学生用类比的方法,得出结论,再鼓励学生给出奇函数的定义.

(2) 奇函数的定义(板书)

设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D 且

f(-x)= - f(x) ,那么f(x)就叫做奇函数.

(三) 学生探索、深化概念:

设计以下问题组织学生讨论思考回答

问题1:奇函数、偶函数的定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别?

问题2:—x与x在几何有何关系?具有奇偶性的函数的定义域有何特征?

问题3:如果一个函数是奇函数,且0在定义域内,f(0)??如果一个函数既是奇函数,又是偶函数,则f(x)有何特性?

通过对三个问题的探讨,引导学生认识以下几点:(多媒体显示)

问题4:结合函数f(x)?1

x的图像回答以下问题:

(1)对于任意一个奇函数f(x),图像上的点P(x, f(x))关于原点的对称点P’的坐标是什么?点P’是否也在函数f(x)的图像上?由此可得到怎样的结论?

(2)如果一个函数的图像是以坐标原点为对称中心的中心对称图形,能否判断它的奇偶性?

学生通过交流探索问题4可以把奇函数的性质总结出来,然后教师发动学生自己研究一下偶函数图像的性质(教师板书)

(四)、知识应用,巩固提高。

例1. 判断下列函数的奇偶性

(1)f(x)=x4 (2)f(x)=x5

(3) f(x)=x+1/x (4)f(x)=1/x2

选例1的第(1)小题板书来示范解题步骤,其他例题让几个学生板演,其余学生在下面完成。

例1设计意图是归纳出判断奇偶性的步骤:

(1) 先求定义域,看是否关于原点对称;

(2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x).

结合例1的答案,发动学生思考:一个函数奇偶性的可能情况有几种类型?(多媒体显示)

例1完成后,要求学生做练习,及时巩固,教师做好巡视指导

练习: 教材第53页,练习A第1题

下面来学习例2、例3

例2已知函数y=f(x)是偶函数,它在y轴右边的图象如下图,画出在y轴左边的图象. (多媒体显示)

1例3 研究函数y?2 的性质并作出它的图像 x

课件演示例2,板书例3.

例2 例3主要让学生体会学习了函数的单调性后为研究函数的性质带来的方便。根据奇、偶函数图像的对称性,只研究函数在y轴一侧的图像和性质就可以知道在另一侧的图像和性质。

(五)归纳小结,布置作业。

从知识和方法两个方面让学生谈本节课的收获,并进行反思。

作业:层次一:教材第52页习题2-1A 6、7、8题 层次二:教材第53页习题2-1B2、3、4题 层次三:补充题:判断按下列函数的奇偶性:

通过分层作业使学生进一步巩固本节课所学内容,并为学有余力和学习兴趣浓厚的学生提供进一步学习的机会

以上是对本节课的一些思考,不妥之处,敬请各位专家评委批评指正

高中数学教案【篇9】

教学准备

1.教学目标

1、知识与技能:

函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

2、过程与方法:

(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示函数的定义域;

3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.

教学重点/难点

重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

教学用具

多媒体

4.标签

函数及其表示

教学过程

(一)创设情景,揭示课题

1、复习初中所学函数的概念,强调函数的模型化思想;

2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.

3、分析、归纳以上三个实例,它们有什么共同点;

4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

(二)研探新知

1、函数的有关概念

(1)函数的概念:

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

记作:y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

注意:

①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

(2)构成函数的三要素是什么?

定义域、对应关系和值域

(3)区间的概念

①区间的分类:开区间、闭区间、半开半闭区间;

②无穷区间;

③区间的数轴表示.

(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

通过三个已知的函数:y=ax+b(a≠0)

y=ax2+bx+c(a≠0)

y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.

师:归纳总结

(三)质疑答辩,排难解惑,发展思维。

1、如何求函数的定义域

例1:已知函数f(x)=+

(1)求函数的定义域;

(2)求f(-3),f()的值;

(3)当a>0时,求f(a),f(a-1)的值.

分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.

分析:由题意知,另一边长为x,且边长x为正数,所以0

所以s==(40-x)x(0

引导学生小结几类函数的定义域:

(1)如果f(x)是整式,那么函数的定义域是实数集R.

2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.

(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.

(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)

(5)满足实际问题有意义.

巩固练习:课本P19第1

2、如何判断两个函数是否为同一函数

例3、下列函数中哪个与函数y=x相等?

分析:

1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

解:

课本P18例2

(四)归纳小结

①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.

(五)设置问题,留下悬念

1、课本P24习题1.2(A组)第1—7题(B组)第1题

2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.

课堂小结

初中数学教案锦集10篇


老师在新授课程时,一般会准备教案课件,老师在写教案课件时还需要花点心思去写。教案是多元教育思维的具体体现。工作总结之家小编针对您的需求精心打磨出一篇内容完备的《初中数学教案》,希望您阅读后有所收获!

初中数学教案【篇1】

教学目标:

1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、过程与方法:通过观察,归纳一元一次方程的概念。

3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。

教学重点:归纳一元次方程的概念

教学难点:感受方程作为刻画现实世界有效模型的意义.

教学过程:

一、情景导入:

我能猜出你们的年龄,相信吗?

只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.

问:你的.年龄乘以2加3等于多少?

学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?

学生讨论并回答

二、知识探究:

1、方程的教学(投影演示)

小彬和小明也在进行猜年龄游戏,我们来看一看。

找出这道题中的等量关系,列出方程.

大家观察,这两个式子有什么特点。

讨论并回答:什么是方程?方程有哪些特点?

2、 判断下列式子是不是方程?

(1)X+2=3(是)(2)X+3Y=6(是)

(3)3M-6(不是)(4)1+2=3(不是)

(5)X+3>5(不是)(6)Y-12=5(是)

三、合作交流

1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)

情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?

你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?

情景二:第五次全国人口普查统计数据(20__年3月28日新华社公布)

截至20__年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了153.94%

1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?

下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?

2X–5=21

40+15X=100

X(1+153.94﹪)=3611

2[X+(X+12)]=200

2[Y+(Y–12)]=200

在一个方程中,只含有一个未知数X(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。

问:大家刚才都已经自己列出了方程,那个同学能够说一下你是怎样列出方程的,列方程应该分为那几步呢?

生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程

四、随堂练习

1、投影趣味习题,

2、做一做

下面有两道题,请选做一题。

(1)、请根据方程2X+3=21自己设计一道有实际背景的应用题。

(2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。

五、课堂小节

1、这节课你学到了什么?

2、这节课给你印象最深的是什么?

六、作业:分组布置

数学教案-你今年几岁了搜集整理

初中数学教案【篇2】

兴义民族师范学院

2012届毕业生

摸拟实习教案

姓 名:马 泽

院 系:数 学 系

专 业:数 学 教 育

学 号:200930412031 指导教师:黄 激 珊

时间:2011年12月18日

第九章

不等式与不等式组

9.1

不等式

第一课时

9.1.1

不等式及其解集

教学目标:让同学们理解不等式及其解集的概念和表示方

法,同时对一元一次不等式的理解。

教学重点:不等式的表示方法和不等式解集的表示形式。教学难点:在实际应用中不等式所满足的条件及其解集的表

示。

教学用具:直尺。

复习导入:复习一元一次方程。教学过程:

一、提出问题:

一辆匀速行驶的汽车在11:20距离A地50千米,要在12:00之前驶过A 地,车速应满足什么条件?

二、分析问题:

解:设车速是x千米/时。

从时间上看,汽车要在12:00之前驶过地,则以2502这个速度行驶50千米所用的时间不到小时,即 ①3x3 从路程上看,汽车要在12:00之前驶过地,则以22x这个速度行驶小时的路程要超过50千米,即50 ②33

式子和从不同的角度表示了车速应满足的条件。

三、归纳定义:

1、不等式:像和这样用符号“”表示大小关系的式子,叫做不等式。

但是,像a+2a-2这样用符号“”表示不等关系的式子也是不等式。这是同学们应该注意的。注意:(1)不含未知数的不等式 例如:34,-1-2(2)含有未知数的不等式5022x 例如:,50x33(3)怎样才能明确未知数满足的条件呢?2x 例如:5032x 当x78时,50;32x 当x75时,50;32x 当x72时,50.3

2x对上面的问题而言,当x取某些值(如78)时,不等式50成立;32x当x取某些值(如75,72)时,不等式50不成立。3

2、不等式的解:与方程类似,我们把不等式成立的未知数的值叫 做不等式的解。2x2x 例如:78是不等式50的解,而75和72不是不等式50的解.33

2x思考:判断下列数中哪些是不等式50的解?376,79,73,80,74.2,75,90,63

你还能最找出这个不等式的其他解吗?这个不等式有多少个解?2x从以上的思考可以发现,当x=75时,不等式50成立,而当x7532x或x=75时,不等式50不成立。3

这就是说:任何一个大于75的数都是不等式2x50的解,这样的解有无数个。

33、解的集合:能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集。

2x例如:50的解集表示为:x75.这个解集还可以用数轴来表示:3

图9.1-1 原点①数轴正方向 ② 实数与点一一对应单位长度

用数轴来表示解集应注意得到问题:

(1)在表示75的点上画空心圆圈,表示不包含这一点。

(2)若画的是实点,则包含这个点。如x≥3 4

图9.1-2

(3)一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。

(4)求不等式的解集的过程叫做解不等式。

4、一元一次不等式:类似于一元一次方程,含有一个未知

数,未知数的次数是1的不等式叫做一元一次不等式。

2x例如:50是一个一元一次不等式。3 同学们还能举出一些一元一次不等式的例子吗?250,7x14,2x423x250注意:中的x在分母位置,这个不等式不是一元一次不等式。3x

四、练习训练:

1、下列数值哪些是不等式x+3>6的解?哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,9,12,16.2、用不等式表示:

(1)a是正数;

(2)a是负数;

(3)a与5的和小于7;

(4)a与2的差大于-1;(5)a的4倍大于8;

(6)a的一半小于3;

3、直接求出不等式的解集:

(1)x+3>6;(2)2x0.五、回顾总结:

1、不等式  不等式的解  解的集合  表示方法(数轴)

2、一元一次不等式;理解概念。

六、作业布置:

1、下列数值中哪些是不等式2x+3>9的解?哪些不是?-4,-2,0,1,3,3.02,4,6,50,58,100.2、用不等式表示:(1)a与5的和是正数;(2)a与2的差是负数;(3)b与15的和小于27;(4)b与12的差大于-5;(5)c的4倍大于或等于8;(6)c的一半小于或等于3;(7)d与e的和不小于0;(8)d与e的差不大于-2.3、写出不等式的解集:(1)x+2>6;(2)2x0.1;(4)-3x

初中数学教案【篇3】

①结合你对一元一次方程中的一次的理解,说一说你对一次函数中的“一次”的理解. ②k可以是怎样的数?

③你怎样认识一次函数和正比例函数的关系?

一个常数b的和即 Y=kx+b 定义:一般地,形

Y=kx+b( k,b 是常数,k≠0 )的函数,叫做一次函数, 当

b=0时,

Y=kx+b即Y=kx,所以说正比例函数是一种特殊的一次函数。

例1、下列函数中,Y是X的一次函数的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X

学生独立

A①②③B①③④C①②④D①②③④

例2、写出下列各题中x与y之间的关系式,并判

解释与应用

断,y是否为x的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间(时)之间的关系式;②圆的面积y(厘米2)与他的半径x(厘米)之间的关系:③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度y(厘米)之间的关系式

初中数学教案【篇4】

一、教学目标

1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是二元一次方程;

2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;

3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

过程与方法目标:

经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力。

情感与态度目标

1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;

2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

二、重点、难点

重点:二元一次方程的概念及二元一次方程的解的概念。

难点

1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。

2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学方法与教学手段

1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

四、教学过程

创设情境导入新课

1、一个数的3倍比这个数大6,这个数是多少?

2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?

思考:这个问题中,有几个未知数?能列一元一次方程求解吗?如果设黄卡取x张,蓝卡取y张,你能列出方程吗?

3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?

师生互动探索新知

1、发现新知

引导学生观察所列的方程:这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?

根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)

2、巩固新知

判断下列各式是不是二元一次方程(1)(2)(3)(4)

3、师生互动再探新知

(1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)

(2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。)

若未知数设为,记做,若未知数设为,记做

4、检验新知

(1)检验下列各组数是不是方程的解:(学生感悟二元一次方程解的不唯一性)

(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)

5、自我挑战三探新知

有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。

请找出这个方程的.一个解,并写出你得到这个解的过程。

学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。

五、总结

比较一元一次方程和二元一次方程的相同点和不同点

相同点:方程两边都是整式,含有未知数的项的次数都是一次。

如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。

初中数学教案【篇5】

教学简案

【课

题】圆的一般方程 【教学目标】

1、知识目标:(1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心和半径,掌握方程x2y2DxEyF0表示圆的条件;

(2)能通过配方等手段,把圆的一般方程化为圆的标准方程,能用待定系数法求圆的方程。

(3)利用圆的方程解决与圆有关的实际问题。

2、能力目标:通过对方程x2y2DxEyF0表示圆的条件的探索,培养学生探索、发现及分析解决问题的实际能力。

3、情感目标:渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

【教学重点】圆的一般方程的代数特征,一般方程与标准方程间互化,根据已知条件确定方程中的系数D、E、F。

【教学难点】对圆的一般方程的认识、掌握和应用。【教学方法】讲授法,分析法。【教学用具】多媒体辅助教学 【教学流程】

一、情景创设 问题1:

在平面直角坐标系中,以C(a,b)为圆心,r为半径的圆的方程是什么?

问题2:

将圆的标准方程展开整理后,能发现哪些特征?(寻找新知识的生长点)

结论:(多媒体显示)

将(xa)2(yb)2r2 展开得x2y22ax2bya2b2r20,我们发现任何圆都能表示为一个具有以下特征的x,y的二次方程:

(1)x2和y2项的系数同为1;

(2)不出现交叉乘积的二次项xy。

问题3:

x2y22x4y60是圆的方程?若是,写出圆心坐标和半径;若不是,则说明理由

二、探索研究

二元二次方程x2y2DxEyF0表示圆的条件是什么?

(创设一种鼓励的宽松的氛围,让学生充分发表自已的观点,教师适当引导。)

二元二次方程x2y2DxEyF0,通过配方后可以化为

D2E2D2E24F(x)(y)

224(1)当D2E24F0时,方程表示以(为半径的圆;

DE1,)为圆心,D2E24F222(2)当D2E24F0时,方程表示一个点(DE,); 22(3)当D2E24F0时,方程没有实数解,因而方程不表示任何图形。板书:圆的一般方程:x2y2DxEyF0(D2E24F0)

指出:(1)圆心(DE1,),半径D2E24F; 222(2)圆的标准方程的优点在于它明确指出了圆心和半径,而一般方程突出了方程形式上的特点;

(3)给出圆的一般方程,会写出它的圆心和半径;若给出相关条件,则能求出圆的方程。

三、应用举例

1、判断下列方程是否表示圆,如果是,并求出各圆的半径和圆心坐标:

(1)x2y26x0;

(2)2x22y24x8y120;

(3)2x22y24x8y100;(4)x2y26x100;

(5)x22y24x8y10。

(解略)

2、求以O(0,0),A(1,1),B(4,2)为顶点的三角形的外接圆方程,并求出它的圆心和半径。

(分析:应用圆的一般方程x2y2DxEyF0,将已知三点的坐标代

入这个方程,得到一个三元一次方程组,解这个三元一次方程组,即可求得

圆的一般方程,对圆的一般方程配方即可求半径长和圆心坐标。同时,将这

种求圆的一般方程的方法称为“待定系数法”。)

四、课内练习

1、判定下列方程中,哪些是圆的方程?如果是,求出它们的圆心和半径:

(1)2x22y24x50;

(2)x2y23x4y120;

3(3)x22y24x2y50;

(4)x22y24x2y1;

(5)3x24xy(x2y)24

2、求过三点A(2,2),B(5,3),C(3,-1)的圆的方程。

五、课内拓展

若圆x2y2DxEyF0与y轴相切于原点,则D,E,F应满足什么条件?若圆与y轴相切呢?

学生讨论,各抒已见,相互补充,完善结论。

我们还可以继续探究:如当圆与x轴相切;过原点;原点在圆内;等等情况时,系数D、E、F应满足的条件。

八、归纳小结

(教师引导,由学生总结一节课的收获,然后显示幻灯片同时教师总结。)

五、布置作业

(1)课堂作业:《数学指导用书》第25页课外习题1(1)(2)(3)(4)、2、4。(2)课外作业:《数学指导用书》第26页课外习题5、6、7。

初中数学教案【篇6】

教学目标:

1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.

2.理解对顶角相等,并能运用它解决一些问题.

重点:

邻补角、对顶角的概念,对顶角的性质与应用.

难点:

理解对顶角相等的性质的探索.

教学过程:

一、创设情境,引入新课

引导语:

我们生活的世界中,蕴涵着大量的相交线和平行线.

本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.

二、尝试活动,探索新知

教师出示一块布片和一把剪刀,表演剪刀剪布的过程.

教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?

学生观察、思考、回答,得出:

握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.

教师提问:我们可以把剪刀抽象成什么简单的图形?

学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.

教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?

学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)

学生根据观察和度量完成下表:

两条直线相交、所形成的角、分类、位置关系、数量关系

教师提问:

如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗?

学生思考回答:

只会改变数量关系而不会改变位置关系.

师生共同定义邻补角、对顶角:

有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.

教师提问:

你同意下列说法吗?如果错误,如何订正?

1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.

2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.

3.邻补角是互补的两个角,互补的两个角也是邻补角.

学生思考回答:1、2是对的,3是错的.

第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.

教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.

教师把说理过程规范地板书:

在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.

教师板书对顶角的性质:

对顶角相等.

强调对顶角的概念与对顶角的性质不能混淆:

对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.

三、例题讲解

【例】 如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

【答案】 由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.

四、巩固练习

1.判断下列图中是否存在对顶角.

2.按要求完成下列各题.

(1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角.

eq o(sup7(,图(1)) ,图(2))

(2)如图,若∠AOD= 90°,那么直线AB与CD的位置关系如何?

【答案】

1.都不存在对顶角.

2.(1)对顶角,邻补角.

对顶角:∠AOC和∠BOD,∠AOD和∠BOC.

邻补角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.

(2)垂直.

五、课堂小结

教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.

教学反思

通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用。

初中数学教案【篇7】

课题:一次函数

教学目标:1.知道一次函数与正比例函数的意义

2.能写出实际问题中正比例函数与一次函数关系的解析式.

3.掌握“从特殊到一般”这种研究问题的方法

教学重点:将实际问题用一次函数表示.

教学难点:将实际问题用一次函数表示.

教学方法:讲解法

教学过程:

一.复习提问

1.什么是函数请举例说明.

2.购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)关系式是什么

3.在上述式子中变量是谁.常量是谁自变量又是谁

二.讲解:

在前面我们遇到过这样一些函数:

y=xs=30t

y=2x+3y=-x+2

这些函数都使用自变量的一次式来表示的`,可以写成y=kx+b的形式

一般的,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.

特别的,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y就叫做x的正比例函数.

例一:

一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.

(1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;

(2)求3.5秒时小球的速度.

分析:v与t之间是正比例关系.

解:(1)v=2t

(2)t=3.5时,v=2×3.5=7(米/秒)

例二:拖拉机工作时,油箱中有油40升.如果每小时耗油6升,求油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式.

分析:t小时耗油6t升,从原油油量中减去6t,就是余油量.

解:Q=40-6t

课堂练习:

P961,2

小结:一次函数与正比例函数的意义,两者之间的关系,一次函数不一定是正比例函数,而正比例函数一定是一次函数,会将简单的实际问题用一次函数或正比例函数表示出来

作业:P971。2。3。4。

初中数学教案【篇8】

一、教学目标

(一)知识与技能

了解数轴的概念,能用数轴上的点准确地表示有理数。

(二)过程与方法

通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

(三)情感、态度与价值观

在数与形结合的过程中,体会数学学习的乐趣。

 二、教学重难点

(一)教学重点

数轴的三要素,用数轴上的点表示有理数。

(二)教学难点

数形结合的思想方法。

三、教学过程

(一)引入新课

提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知

学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

学生活动:画图表示后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的?

师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习

如图,写出数轴上点A,B,C,D,E表示的数。

(四)小结作业

提问:今天有什么收获?

引导学生回顾:数轴的三要素,用数轴表示数。

初中数学教案【篇9】

教学目标

1.使学生正确理解的意义,掌握的三要素;

2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;

3.使学生初步理解数形结合的思想方法.

教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.

难点:正确理解有理数与上点的对应关系.

课堂教学过程 设计

一、从学生原有认知结构提出问题

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——.

二、讲授新课

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.

进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.

三、运用举例 变式练习

例1 画一个,并在上画出表示下列各数的点:

例2 指出上A,B,C,D,E各点分别表示什么数.

课堂练习

示出来.

2.说出下面上A,B,C,D,O,M各点表示什么数?

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

四、小结

指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究.

五、作业

1.在下面上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)A,H,D,E,O各点分别表示什么数?

2.在下面上,A,B,C,D各点分别表示什么数?

3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初中数学教案【篇10】

活动目标:

1、通过游戏、操作活动学习按群计数。

2、能与同伴友好地进行数学游戏,能采取轮流、协商等方法与同伴合作完成任务。。

活动准备:

5个文具店,文具用品若干、5个进货筐、记录纸。摆放图示一张、五角星贴纸若干

——我们班开了很多文具店,我是经理,我要为文具店招聘一些售货员,你们愿意来招聘吗?售货员要有什么样的本领呢?一要会又快又准确地统计商品;二要会整齐地摆放商品;三就是要学会友好地合作,共同完成任务。

——我们一共有5个文具店,每个文具店需要3个售货员,请你们3个3个手拉手,自由组合,就坐。

2、第一次统计,学习2个2个点数。

——文具店里到底有哪些文具用品,有多少呢?现在就要请小售货员们互相合作去统计一下,先想想怎样合作?

——提出点数要求:原来我们都是1个1个去数,想想除了这样数,还可以怎么数呢?你们可以看看这些文具用品都是怎么摆放的,你找一个又快又简单的方法去数。

——幼儿统计记录,教师有意识地倾听幼儿点数,指导幼儿2个2个数。引导先统计完的小组学习自己验证。

——教师总结:2个2个数以后又快又简单,可以节省我们很多时间,为我们的生活带来方便。

3、进货、摆货。 ——经理发现我们文具店的商品已经卖掉了不少,有的已经空了,所以我要去进货了。

——出示5个货筐。这些货要怎么放进去呢?原来是两个两个放,有没有其他的方法了呢?

——出示摆放图。这张图能看懂吗?表示什么?

——幼儿操作,教师观察、指导。

——验证摆放的是否正确。

4、第二次统计,学习各种点数方法。

——进货后文具用品又有多少了呢?我们又要进行第二次统计了。.来源屈.老师教案网;这次统计时想想你可以怎么数了呢?

——幼儿统计记录,教师有意识地指导幼儿运用各种方法点数。

5、特殊的奖励。

——今天经理发现我们这些来招聘的小售货员每一个都很聪明能干。我宣布,你们全部被录取了。而且今天我们的客人老师还有一份特殊的奖励呢,就是五角星贴纸,请每个小售货员去找一个客人老师,用各种方法数一数你的五角星有几个,然后告诉客人老师。

活动反思:

按群计数就是计数时不以单个物体为单位,而是以群体(物体群)为单位。幼儿按群计数的能力不是突然产生的,而是在熟练掌握10以内数概念的基础上发展起来的。今天的数学活动我们就和小朋友一起学习了按群计数的方法,孩子们懂得了计数还可以两个两个地数,五个五个地数或十个十个地数……不过对部分幼儿来说还有一定的难度。