高一数学教案推荐14篇

高一数学教案推荐14篇。

我们经过整理,为你编辑了高一数学教案。教案课件是老师教学工作的起始环节,每位老师都需要认真准备自己的教案课件。 学生反应可以帮助教师调整教学方案,提高教学效果。欢迎大家借鉴与参考,希望对大家有所帮助!

高一数学教案 篇1

1.在开学初,我就教学几何画板4。0的用法,在教函数图象画法的过程当中,发现学生根据选定坐标作点时,不太注意选择横坐标与纵坐标的顺序,本课设计起源于此。虽然几何画板4。04中,能直接根据函数解析式画出图象,但这样反而不能揭示图象对称的本质,所以本节课教学中,我有意选择了几何画板4。0进行教学。

2.荷兰数学教育家弗赖登塔尔认为,数学学习过程当中,可借助于生动直观的形象来引导人们的思想过程,但常常由于图形或想象的错误,使人们的思维误入歧途,因此我们既要借助直观,但又必须在一定条件下摆脱直观而形成抽象概念,要注意过于直观的例子常常会影响学生正确理解比较抽象的概念。

计算机作为一种现代信息技术工具,在直观化方面有很强的表现能力,如在函数的图象、图形变换等方面,利用计算机都可得到其他直观工具不可能有的效果;如果只是为了直观而使用计算机,但不能达到更好地理解抽象概念,促进学生思维的目的的话,这样的教学中,计算机最多只是一种普通的直观工具而已。

在本节课的教学中,计算机更多的是作为学生探索发现的工具,学生不但发现了函数与其反函数图象间的对称关系,而且在更深层次上理解了反函数的概念,对反函数的存在性、反函数的求法等方面也有了更深刻的理解。

当前计算机用于中学数学的主要形式还是以辅助为主,更多的是把计算机作为一种直观工具,有时甚至只是作为电子黑板使用,今后的发展方向应是:将计算机作为学生的认知工具,让学生通过计算机发现探索,甚至利用计算机来做数学,在此过程当中更好地理解数学概念,促进数学思维,发展数学创新能力。

3.在引出两个函数图象对称关系的时候,问题设计不甚妥当,本来是想要学生回答两个函数图象对称的关系,但学生误以为是问如何由y=x3的图象得到y=的图象,以致将学生引入歧途。这样的问题在今后的教学中是必须力求避免的。

高一数学教案 篇2

一、教材分析

本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1 函数的概念》共3课时,本节课是第1课时。

托马斯说:“函数概念是近代数学思想之花”。 生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。

函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。函数的的重要性正如恩格斯所说:“数学中的转折点是笛卡尔的变数,有了变数,运动就进入了数学;有了变数,辩证法就进入了数学”。

二、学生学习情况分析

函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;(三)高中用导数工具研究函数的单调性和最值。

1.有利条件

现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

初中用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

2.不利条件

用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

三、教学目标分析

课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

1.知识与能力目标:

⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

⑵理解函数的三要素的含义及其相互关系;

⑶会求简单函数的定义域和值域

2.过程与方法目标:

⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.

3.情感、态度与价值观目标:

感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

四、教学重点、难点分析

1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。 但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

2.教学难点:第一:从实际问题中提炼出抽象的概念;第二:符号“y=f(x)”的含义的理解.

难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

五、教法与学法分析

1.教法分析

本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

2.学法分析

在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

高一数学教案 篇3

第二十四教时

教材:倍角公式,推导和差化积及积化和差公式

目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。

过程:

一、 复习倍角公式、半角公式和万能公式的推导过程:

例一、 已知 , ,tan = ,tan = ,求2 +

(《教学与测试》P115 例三)

解:

又∵tan2 0,tan 0 ,

2 + =

例二、 已知sin cos = , ,求 和tan的值

解:∵sin cos =

化简得:

∵ 即

二、 积化和差公式的推导

sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下)

例三、 求证:sin3sin3 + cos3cos3 = cos32

证:左边 = (sin3sin)sin2 + (cos3cos)cos2

= (cos4 cos2)sin2 + (cos4 + cos2)cos2

= cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

= cos4cos2 + cos2 = cos2(cos4 + 1)

= cos22cos22 = cos32 = 右边

原式得证

三、 和差化积公式的推导

若令 + = , = ,则 , 代入得:

这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。

例四、 已知cos cos = ,sin sin = ,求sin( + )的值

解:∵cos cos = , ①

sin sin = , ②

四、 小结:和差化积,积化和差

五、 作业:《课课练》P3637 例题推荐 13

P3839 例题推荐 13

P40 例题推荐 13

高一数学教案 篇4

一、本课数学内容的本质、地位、作用分析

普通高中课标教材必修1共安排了三章内容,第一章是《集合与函数的概念》,第二章是《基本初等函数(Ⅰ)》,第三章是《函数的应用》。第三章编排了两块内容,第一部分是函数与方程,第二部分是函数模型及其应用。本节课方程的根与函数的零点,正是在这种建立和运用函数模型的大背景下展开的。本节课的主要教学内容是函数零点的定义和函数零点存在的判定依据,这两者显然是为下节“用二分法求方程近似解”这一“函数的应用”服务的,同时也为后续学习的算法埋下伏笔。由此可见,它起着承上启下的作用,与整章、整册综合成一个整体,学好本节意义重大。

函数在数学中占据着不可替代的核心地位,根本原因之一在于函数与其他知识具有广泛的联系,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机地联系在一起。方程本身就是函数的一部分,用函数的观点来研究方程,就是将局部放入整体中研究,进而对整体和局部都有一个更深层次的理解,并学会用联系的观点解决问题,为后面函数与不等式和数列等其他知识的联系奠定基础。

二、教学目标分析

本节内容包含三大知识点:

一、函数零点的定义;

二、方程的根与函数零点的等价关系;

三、零点存在性定理。

结合本节课引入三大知识点的方法,设定本节课的知识与技能目标如下:

1.结合方程根的几何意义,理解函数零点的定义;

2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.

本节课是学生在学习了函数的性质,具备了初步的数形结合知识的基础上,通过对特殊函数图象的分析进行展开的,是培养学生“化归与转化思想”,“数形结合思想”,“函数与方程思想”的优质载体。

结合本节课教学主线的设计,设定本节课的过程与方法目标如下:

1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;

2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;

3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;

4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力。

由于本节课将以教师引导,学生探究为主体形式,故设定本节课的情感、态度与价值观目标如下:

1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯。

3.使学生感受学习、探索发现的乐趣与成功感。

三、教学问题诊断

学生具备的认知基础:

1.基本初等函数的图象和性质;

2.一元二次方程的根和相应函数图象与x轴的联系;

3.将数与形相结合转化的意识。

学生欠缺的实际能力:

1.主动应用数形结合思想解决问题的意识还不强;

2.将未知问题已知化,将复杂问题简单化的化归意识淡薄;

3.从直观到抽象的概括总结能力还不够;

4.概念的内涵与外延的探究意识有待提高。

对本节课的教学,教材是利用一组一元二次方程和二次函数的关系来引入函数零点的。这样处理,主要是想让学生在原有二次函数的认知基础上,使其知识得到自然的发生发展。理解了像二次函数这样简单的函数零点,再来理解其他复杂的函数零点就会容易一些。但学生对如何解一元二次方程以及二次函数的图象早就熟练了,这样的引入过程使学生感到平淡,激发不起他们的兴趣,他们对零点的理解也只会浮于表面,也无法使其体会引入函数零点的必要性,理解不了方程根存在的本质原因是零点的存在。

教材是通过由直观到抽象的`过程,才得到判断函数y=f(x)在(a,b)内有零点的一种条件的,如果不能有效地对该过程进行引导,容易出现学生被动接受,盲目记忆的结果,而丧失了对学生应用数学思想方法的意识进行培养的机会。

教材中零点存在性定理只表述了存在零点的条件,但对存在零点的个数并未多做说明,这就要求教师对该定理的内涵和外延要有清晰的把握,引导学生探究出只存在一个零点的条件,否则学生对定理的内容很容易心存疑虑。

四、本节课的教法特点以及预期效果分析

本节课教法的几大特点总结如下:

1.以问题为主线贯穿始终;

2.精心设置引导性的语言放手让学生探究;

3.注重在引导学生探究问题解法的过程中渗透数学思想;

4.在探究过程中引入新知识点,在引入新知识点后适时归纳总结,进行探究阶段性成果的应用。

由于所设置的主线问题具有很高的探究价值,所以预期学生热情会很高,积极性调动起来,那整节课才能活起来;

由于为了更好地组织学生探究所设置的引导性语言,重在去挖掘学生内心真实的想法和他们最真实体会到的困难,所以通过学生活动会更多地暴露他们在基础知识掌握方面的缺憾,免不了要随时纠正对过往知识的错误理解;

因为在探究过程中不断渗透数学思想,学生对亲身经历的解题方法就会有更深的体会,主动应用数学思想的意识在上升,对于主线问题也应该可以迎刃而解;

因为在探究过程中引入新知识点,学生对新知识产生的必要性会有更深刻的体会和认识,同时在新知识产生后,又适时地加以应用,学生对新知识的应用能力不断提高。

高一数学教案 篇5

一、教学目标

(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;

(2)理解逻辑联结词“或”“且”“非”的含义;

(3)能用逻辑联结词和简单命题构成不同形式的复合命题;

(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;

(5)会用真值表判断相应的复合命题的真假;

(6)在知识学习的基础上,培养学生简单推理的技能.

二、教学重点难点:

重点是判断复合命题真假的方法;难点是对“或”的含义的理解.

三、教学过程

1.新课导入

在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的'教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)

(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)

学生举例:平行四边形的对角线互相平. ……(1)

两直线平行,同位角相等.…………(2)

教师提问:“……相等的角是对顶角”是不是命题?……(3)

(同学议论结果,答案是肯定的.)

教师提问:什么是命题?

(学生进行回忆、思考.)

概念总结:对一件事情作出了判断的语句叫做命题.

(教师肯定了同学的回答,并作板书.)

由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.

(教师利用投影片,和学生讨论以下问题.)

例1 判断以下各语句是不是命题,若是,判断其真假:

命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.

初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.

2.讲授新课

大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?

(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)

(1)什么叫做命题?

可以判断真假的语句叫做命题.

判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 x2-5x+6=0

中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

(2)介绍逻辑联结词“或”、“且”、“非”.

“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.

命题可分为简单命题和复合命题.

不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.

由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.

(4)命题的表示:用p ,q ,r ,s ,……来表示.

(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)

我们接触的复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式.

给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.

对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q .

在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.

3.巩固新课

例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.

(1)5 ;

(2)0.5非整数;

(3)内错角相等,两直线平行;

(4)菱形的对角线互相垂直且平分;

(5)平行线不相交;

(6)若ab=0 ,则a=0 .

(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)

高一数学教案 篇6

一、教材分析

1、教材的地位和作用:

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

根据教学大纲的要求我确定本节课的教学重点为:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

二、学情教法分析:

对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、学法指导:

在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(N﹡;解析式)

通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 ......

3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 ......

通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情站境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二) 新课探究

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” )。

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1-an=d (n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1. 9 ,8,7,6,5,4,……;√ d=-1

2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

其中第一个数列公差0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

高一数学教案 篇7

本文题目:高一数学教案:对数及其运算教案

一、对数的概念

编写人:审稿人:

班级:姓名:小组:

一、学习目标

1)理解对数的概念;

2)能熟练地进行对数式与指数式的转化.

二、教学重点和教学难点

重点:对数的概念

难点:对对数概念的理解

三、知识链接

1.指数函数:(),,0

2.运算性质:

四.学习过程:

阅读课本,解答下面问题:

1、对数的定义:一般地,如果()的b次幂等于N,即,那么

数叫做以为底的对数,记作:.

其中叫做对数的,叫做.

2、把下列指数式写成对数式

①、②、③、

3、把下列对数式写成指数式

①、;②;③;

阅读课本,解答下面问题:

4、特殊对数

通常以为底的对数叫常用对数,并把简记作

在科学技术中常使用以无理数为底的对数,以为底的对数称为自然对数,并把简记作.

如:;.

5、根据对数式与指数式的关系,填写下表中空白处的名称.

式子名称

指数式

对数式

6、思考交流

高一数学教案 篇8

经典例题

已知关于 的方程 的实数解在区间 ,求 的取值范围。

反思提炼:1.常见的四种指数方程的一般解法

(1)方程 的解法:

(2)方程 的解法:

(3)方程 的解法:

(4)方程 的解法:

2.常见的三种对数方程的一般解法

(1)方程 的解法:

(2)方程 的解法:

(3)方程 的解法:

3.方程与函数之间的转化。

4.通过数形结合解决方程有无根的问题。

课后作业:

1.对正整数n,设曲线 在x=2处的切线与轴交点的纵坐标为 ,则数列 的前n项和的公式是

[答案] 2n+1-2

[解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.

f ′(2)=-n2n-1-2n=(-n-2)2n-1.

在点x=2处点的纵坐标为=-2n.

∴切线方程为+2n=(-n-2)2n-1(x-2).

令x=0得,=(n+1)2n,

∴an=(n+1)2n,

∴数列ann+1的前n项和为2(2n-1)2-1=2n+1-2.

2.在平面直角坐标系 中,已知点P是函数 的图象上的动点,该图象在P处的切线 交轴于点M,过点P作 的垂线交轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________

解析:设 则 ,过点P作 的垂线

,所以,t在 上单调增,在 单调减, 。

高一数学教案 篇9

一、本课数学内容的本质、地位、作用分析

普通高中课标教材必修1共安排了三章内容,第一章是《集合与函数的概念》,第二章是《基本初等函数(Ⅰ)》,第三章是《函数的应用》。第三章编排了两块内容,第一部分是函数与方程,第二部分是函数模型及其应用。本节课方程的根与函数的零点,正是在这种建立和运用函数模型的大背景下展开的。本节课的主要教学内容是函数零点的定义和函数零点存在的判定依据,这两者显然是为下节“用二分法求方程近似解”这一“函数的应用”服务的,同时也为后续学习的算法埋下伏笔。由此可见,它起着承上启下的作用,与整章、整册综合成一个整体,学好本节意义重大。

函数在数学中占据着不可替代的核心地位,根本原因之一在于函数与其他知识具有广泛的联系,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机地联系在一起。方程本身就是函数的一部分,用函数的观点来研究方程,就是将局部放入整体中研究,进而对整体和局部都有一个更深层次的理解,并学会用联系的观点解决问题,为后面函数与不等式和数列等其他知识的联系奠定基础。

二、教学目标分析

本节内容包含三大知识点:

一、函数零点的定义;

二、方程的根与函数零点的等价关系;

三、零点存在性定理。

结合本节课引入三大知识点的方法,设定本节课的知识与技能目标如下:

1.结合方程根的几何意义,理解函数零点的定义;

2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.

本节课是学生在学习了函数的性质,具备了初步的数形结合知识的基础上,通过对特殊函数图象的分析进行展开的,是培养学生“化归与转化思想”,“数形结合思想”,“函数与方程思想”的优质载体。

结合本节课教学主线的设计,设定本节课的过程与方法目标如下:

1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;

2.通过数形结合思想的.渗透,培养学生主动应用数学思想的意识;

3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;

4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力。

由于本节课将以教师引导,学生探究为主体形式,故设定本节课的情感、态度与价值观目标如下:

1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯。

3.使学生感受学习、探索发现的乐趣与成功感。

三、教学问题诊断

学生具备的认知基础:

1.基本初等函数的图象和性质;

2.一元二次方程的根和相应函数图象与x轴的联系;

3.将数与形相结合转化的意识。

学生欠缺的实际能力:

1.主动应用数形结合思想解决问题的意识还不强;

2.将未知问题已知化,将复杂问题简单化的化归意识淡薄;

3.从直观到抽象的概括总结能力还不够;

4.概念的内涵与外延的探究意识有待提高。

对本节课的教学,教材是利用一组一元二次方程和二次函数的关系来引入函数零点的。这样处理,主要是想让学生在原有二次函数的认知基础上,使其知识得到自然的发生发展。理解了像二次函数这样简单的函数零点,再来理解其他复杂的函数零点就会容易一些。但学生对如何解一元二次方程以及二次函数的图象早就熟练了,这样的引入过程使学生感到平淡,激发不起他们的兴趣,他们对零点的理解也只会浮于表面,也无法使其体会引入函数零点的必要性,理解不了方程根存在的本质原因是零点的存在。

教材是通过由直观到抽象的过程,才得到判断函数y=f(x)在(a,b)内有零点的一种条件的,如果不能有效地对该过程进行引导,容易出现学生被动接受,盲目记忆的结果,而丧失了对学生应用数学思想方法的意识进行培养的机会。

教材中零点存在性定理只表述了存在零点的条件,但对存在零点的个数并未多做说明,这就要求教师对该定理的内涵和外延要有清晰的把握,引导学生探究出只存在一个零点的条件,否则学生对定理的内容很容易心存疑虑。

四、本节课的教法特点以及预期效果分析

本节课教法的几大特点总结如下:

1.以问题为主线贯穿始终;

2.精心设置引导性的语言放手让学生探究;

3.注重在引导学生探究问题解法的过程中渗透数学思想;

4.在探究过程中引入新知识点,在引入新知识点后适时归纳总结,进行探究阶段性成果的应用。

由于所设置的主线问题具有很高的探究价值,所以预期学生热情会很高,积极性调动起来,那整节课才能活起来;

由于为了更好地组织学生探究所设置的引导性语言,重在去挖掘学生内心真实的想法和他们最真实体会到的困难,所以通过学生活动会更多地暴露他们在基础知识掌握方面的缺憾,免不了要随时纠正对过往知识的错误理解;

因为在探究过程中不断渗透数学思想,学生对亲身经历的解题方法就会有更深的体会,主动应用数学思想的意识在上升,对于主线问题也应该可以迎刃而解;

因为在探究过程中引入新知识点,学生对新知识产生的必要性会有更深刻的体会和认识,同时在新知识产生后,又适时地加以应用,学生对新知识的应用能力不断提高。

高一数学教案 篇10

同一只封建宗法制度的黑手,伸出了两条绳索,捆住了妇女的脖子,朝着相反的方向紧勒,要把劳动妇女置于死地而后快。祥林嫂当时就处在这种极端悲惨的境地中:

族权迫使她寡而再嫁,夫权又视此为奇耻大辱,使她忍辱含冤,永远生活在耻辱之中。祥林嫂以后的悲剧,都是由此而引起的。

那么,祥林嫂是如何对待新迫害的呢?

3.高潮:

①祥林嫂为什么又一次来到鲁四老爷家?

②有人认为,丧夫失子有偶然性,这种看法对不对?

丧夫失子似乎有偶然性,然而隐藏在偶然性背后的,是那起决定作用的必然性。祥林嫂的丈夫死于旧社会中蔓延着的传染病伤寒,阿毛死于祥林嫂的贫困、劳碌。(若不是忙着打柴摘茶养蚕,能让年仅两三岁的孩子去剥豆吗?)因此,实质上,是罪恶的政权夺走了祥林嫂的丈夫和儿子的生命,使她陷于嫁而再寡的境地。作者开始把批判的笔触由封建夫权、族权扩展到封建政权。

按照封建宗法观念,妇女出嫁从夫,夫死从子,一旦丧夫失子,则连在家庭中生存的权利都被剥夺了。因此,大伯来收屋使祥林嫂走投无路,只好再一次来到鲁家。她到鲁家后,又遭受了更大的打击。

③在鲁四老爷,人们对待祥林嫂这个嫁而再寡的不幸女人态度如何?

A.鲁四老爷的态度:

鲁四老爷站在顽固维护封建宗法制度的立场上,从精神上残酷地虐杀她。他暗暗地告诫四婶的那段话,就是置祥林嫂于死地而又不露一丝血痕的软刀子。(通过四婶先后喊出三句你放着罢,杀人不见血地葬送了祥林嫂的性命。)

B.人们的态度:

人们叫她的声调和先前很不同。

鲁迅用他那犀利的笔锋,从广阔的领域里揭示了封建社会黑暗的程度。

人们对祥林嫂的态度,使她感到痛苦与迷惑。她不时地向人们诉说着自己不幸的遭遇,她的精神却惨遭蹂躏。而柳妈的说鬼又给祥林嫂新的打击。

C.柳妈说鬼:

④祥林嫂是如何对待这如此沉重的打击的?其结果如何?

为了争得做人的权利,为了求得一线生存的希望,她在竭尽全力地反抗着:

她背着沉重的精神包袱,整日劳碌着,以便积够十二元鹰洋,用捐门槛的方法去摆脱人们在阳世、阴世间给她设下的罪名,她忍受着咬啮人心的嘲笑和侮辱,在无边的寂寞和悲哀中,默默干了一年,这是何等坚韧的反抗精神啊!

而反抗的结果,出乎柳妈、祥林嫂的预想,这血淋淋的事实深刻地说明了:祥林嫂是无法赎罪的,祥林嫂陷入了求生不得,欲死不能的境地。

4.结局:

当祥林嫂被折磨得像木偶人,丧失了当牛做马的条件后,鲁四老爷就一脚把她踢出门外,使她终于成了只有那眼珠间或一轮,还可以表示她是一个活物的僵尸。即使这样,她在临死前,还向我提出了三个问题:

A.一个人死了之后,究竟有没有魂灵的?

B.那么,也就有地狱了?

C.那么,死掉的一家的人,都能见面的?

这是对魂灵的有无表示疑惑。

她希望人死后有灵魂,因为她想看见自己的儿子;她害怕人死后有灵魂,因为她害怕在阴间被锯成两半。这种疑惑是她对自己命运的疑惑,但也正是这种疑惑,这种无法解脱的矛盾,使她在临死前受到了极大的精神折磨,最后,悲惨地死去。

从祥林嫂一生的悲惨遭遇中,可以清楚地看到,封建的宗法制度正是用政权、族权、神权、夫权这四条绳索把祥林嫂活活地勒死的。

祥林嫂一生的悲惨遭遇,正是旧中国千百万劳动妇女悲惨遭遇的真实写照。作者正是通过塑造祥林嫂这一典型人物,对吃人的封建制度和封建礼教进行深刻的揭露和有力地抨击的。

小结:

祥林嫂是生活在旧中国的一个被践踏、被愚弄、被迫害、被鄙视的勤劳、善良、质朴、顽强的劳动妇女的典型形象。

总之,祥林嫂的悲剧是一个社会悲剧,造成这一悲剧的根源是封建礼教对中国劳动妇女的摧残和封建思想对当时中国社会的根深蒂固的统治。

第三课时

本课时重点分析鲁四老爷、我和柳妈的形象。

一、检查作业:

二、分析鲁四老爷:

鲁四老爷是当时农村中地主阶级的代表人物,是资产阶级民主革命时期地主阶级知识分子的典型形象。他政治上迂腐、保守,顽固地维护旧有的封建制度,反对一切改革与革命。他思想上反动,尊崇理学和孔孟之道。自觉维护封建制度和封建礼教。他是造成祥林嫂悲剧的一个重要人物。

1.作者是通过什么手法来刻画这个人物的呢?

①间接描写:

通过鲁四老爷的书房陈设的描写,点明了鲁四老爷的身分(地主阶级、封建理学的卫道士),揭露了他的丑恶本质,从而揭示出他成为杀害祥林嫂的刽子手的深刻的阶级根源和思想根源。

②直接描写:

A.行动描写:

这表现在祥林嫂被抢走的两件事上:

当婆婆一边抢人一边来领工钱时,鲁四老爷把祥林嫂一文还没有的工钱全交给了婆婆。

与此相对照的是对被压迫的寡妇祥林嫂的冷酷无情。

祥林嫂曾那样辛勤地为鲁家劳动过,可当她遭到恶运时,鲁家却无动于衷,连祥林嫂走没走、怎么走的,都毫不过问,只是到了正午,四婶肚子饿了,这才想起了祥林嫂淘米时拿走米和淘箩,于是倾巢出动分头寻淘箩;连平时摆派头、端架子的鲁四老爷都踱出门外,直到河边,等看见米和淘箩平平正正的放在岸上,旁边还有一株菜时,这才放心。这场虚惊,入木三分地揭露了:在封建统治者的眼里,一个劳动妇女的命运都不如一个淘箩、一点米、一株菜,鲁四老爷冷酷残忍的嘴脸跃然纸上。

B.语言描写:

在祥林嫂的问题上,鲁四老爷一共开过六次口,说了百十来个字,却就把他反动、顽固、虚伪自私、阴险狠毒的性格特征,把他杀害祥林嫂的罪行,揭露得淋漓尽致。

a.祥林嫂被抢前:

b.祥林嫂被抢时:

c.当他为寻淘箩,踱到河边时:

d.紧接着,午饭之后,卫婆子又来时:

e.对四婶的暗暗告诫:

f.祥林嫂死后:

作为这六次开口背景的是鲁四老爷虚伪寒暄后的大骂其新党,它恰恰深刻地揭示了那六次开口的根源。

三、分析我这一形象:

小说中的我是一个具有进步思想的小资产阶级知识分子的形象。我有反封建的思想倾向,憎恶鲁四老爷,同情祥林嫂。对祥林嫂提出的魂灵的有无的问题,之所以作了含糊的回答,有其善良的一面;同时也反映了我的软弱和无能。

在小说的结构上,我又起着线索的作用。祥林嫂一生的悲惨遭遇都是通过我的所见所闻来展现的。我是事件的见证人。

四、分析柳妈:

问:有人认为柳妈是帮助鲁四老爷杀害祥林嫂的凶手。你是怎样来看待这一问题呢?

明确:柳妈和祥林嫂一样都是旧社会的受害者。虽然她脸上已经打皱,眼睛已经干枯,可是在年节时还要给地主去帮工,可见,她也是一个受压迫的劳动妇女。但是,由于她受封建迷信思想和封建礼教的毒害很深,相信天堂、地狱之类邪说和饿死事小,失节事大的理学信条,所以她对祥林嫂改嫁时头上留下的伤疤,采取奚落的态度。至于她讲阴司故事给祥林嫂听,也完全出于善意,主观愿望还是想为祥林嫂寻求赎罪的办法,救她跳出苦海,并非要置祥林嫂于死地,只是结果适得其反。

她的主观愿望和客观效果的矛盾说明柳妈是以剥削阶级统治人民的思想──封建礼教和封建迷信思想为指导,来寻求解救祥林嫂的药方的,这不但不会产生疗效的效果,反而给自己的姐妹造成了难以支持的精神重压,把祥林嫂推向更恐怖的深渊之中。

高一数学教案 篇11

她的主观愿望和客观效果的矛盾说明柳妈是以剥削阶级统治人民的思想──封建礼教和封建迷信思想为指导,来寻求解救祥林嫂的药方的,这不但不会产生疗效的效果,反而给自己的姐妹造成了难以支持的精神重压,把祥林嫂推向更恐怖的深渊之中。

同情他的人,也把他推向深渊,这更显示出悲剧的可悲。柳妈正是这样一个同情祥林嫂而又给她痛苦的人。

第四课时

本课时重点分析写作特点。

一、检查作业:

二、分析、讨论写作特点:

1.精当的环境描写。

作者巧妙地把祥林嫂悲剧性格上的几次重大变化,都集中在鲁镇祝福的特定的环境里,三次有关祝福的描写,不但表现了祥林嫂悲剧的典型环境,而且也印下祥林嫂悲惨一生的足迹。

①第一次是描写镇上各家准备祝福的情景。

祝福是鲁镇年终的大典,富人们要在这一天迎接福神,拜求来年一年的好运气,以便继续他们贪得无厌的幸福生活,而制作福礼却要像祥林嫂一样的女人臂膊在水里浸得通红,没日没夜地付出自己的艰辛,可见富人们所祈求的幸福,是建立在榨取这些廉价奴隶的血汗之上的。这样通过环境描写就揭露了人与人之间的矛盾冲突,预示了祥林嫂悲剧的社会性。同时,通过年年如此,家家如此,今年自然也如此的描写,也显示了辛亥革命以后中国农村的状况:阶级关系依旧,风俗习惯依旧;人们的思想意识依旧。一句话,封建势力和封建迷信思想对农村的统治依旧。这样,通过环境描写,就揭示出祥林嫂悲剧的社会根源,预示了祥林嫂悲剧的必然性。

②第二次是对鲁四老爷家祝福的描写。

祝福本身就是旧社会最富有特色的封建迷信活动,所以在祝福时封建宗法思想和反动的理学观念也表现得最为强烈,在鲁四老爷不准败坏风俗的祥林嫂沾手的告诫下,祥林嫂失去了祝福的权力。她为了求取这点权力,用历来积存的工钱捐了一条赎罪的门槛,但所得到的仍是你放着罢,祥林嫂。这样一句喝令,就粉碎了她生前免于侮辱,死后免于痛苦的愿望,她的一切挣扎的希望都在这一句喝令中破灭了。就这样,鲁四老爷在祝福的时刻凭着封建宗法思想和封建礼教的淫威,把祥林嫂一步步逼上死亡的道路。

特定的环境描写,推动了情节的发展,同时也增加了人物形象的真实感与感染力。

③第三次是结尾通过我的感受对祝福景象的描写。

祥林嫂死的惨象和天地圣众预备给鲁镇的人们以无限的幸福的气氛,形成鲜明的对照,深化了对旧社会杀人本质的揭露,同时在布局上也起到了首尾呼应,使小说结构更臻完善的作用。

2.富有特色的人物刻画:

①肖像描写:

三次变化:

②画眼睛(眼神):

3.倒叙的手法:

三、小结:

以《祝福》为题的意义:

1.小说起于祝福,结于祝福,中间一再写到祝福,情节的发展与祝福有着密切的关系。

2.封建势力通过祝福杀害了祥林嫂,祥林嫂又死于天地圣众预备给鲁镇的人们以无限的幸福的祝福声中。通过这个标题,就把凶人的愚顽的欢呼和悲惨的弱者的不幸,鲜明地摆到读者的面前,形成强烈的对比,在表现主题方面更增强了祥林嫂遭遇的悲剧性。

教学目标

1.准确把握祥林嫂的形象特征,理解造成人物悲剧的社会根源,从而认识旧社会封建礼教的罪恶本质。

2.学习本文综合运用肖像描写、动作描写、语言描写等塑造人物的方法。

3.体会并理解本文环境描写的作用,理解本文倒叙手法的作用。

教学课时:四课时

教学步骤:

第一课时

本课时重点理清小说的情节结构,了解倒叙的作用。

一、导入新课:

我们在初中曾经学过鲁迅的小说《故乡》、《孔乙己》,其中由活泼可爱而变成麻木愚昧的闰土,站着喝酒而穿长衫的孔乙己,都给我们留下了深刻的印象。今天,我们学习的是鲁迅先生又一篇著名的小说《祝福》。

二、介绍背景:

《祝福》写于1924年2月7日,是鲁迅短篇小说集《彷徨》的第一篇,最初发表于1924年3月25日出版的上海《东方杂志》半月刊第二十一卷第6号上,后收入《鲁迅全集》第二卷。

鲁迅以极大的热情欢呼辛亥革命的爆发,可是不久就失望了。他看到辛亥革命以后,帝制政权虽被推翻,但代之而起的却是地主阶级的军阀官僚的统治,封建社会的基础并没有彻底摧毁,中国的广大人民,尤其是农民,日益贫困化,他们过着饥寒交迫的生活,宗法观念、封建礼教仍然是压在人民头上的精神枷锁。鲁迅在《祝福》里,深刻地展示了这一时期中国农村的真实面貌。

这一时期的鲁迅基本上还是一个革命民主主义者,还不可能用马克思主义来分析观察,有时就不免发生怀疑,感到失望。他把这一时期的小说集叫做《彷徨》,显然反映了其时自己忧愤的心情。但鲁迅毕竟是一个真的猛士,敢于直面惨淡的人生,敢于正视淋漓的鲜血,他决不会畏缩、退避,而是积极奋斗。

《祝福》这篇小说通过祥林嫂一生的悲惨遭遇,反映了辛亥革命以后中国的社会矛盾,深刻地揭露了地主阶级对劳动妇女的摧残与迫害,揭示了封建礼教吃人的本质,指出彻底反封建的必要性。

三、研习课文:

1、自读预习提示,了解小说的教学重点,明确教学目标。

2、理清情节,了解倒叙的作用。

3、速读课文,概括各段内容。

提问:这篇小说是按时间顺序叙述,还是另有安排?

明确:本文在序幕以后就写出了故事的结局,这是采取了倒叙的手法。

提问:在结构上采取倒叙手法有什么作用?

讨论归纳:

设置悬念,使读者急于追根溯源探求原委;写祥林嫂在富人们一片祝福中死去,造成了浓重的悲剧气氛,而且死后引起了鲁四老爷的震怒,揭示了祥林嫂与鲁四老爷之间的尖锐的矛盾,突出了小说反封建的主题。

第二课时

本课时重点分析祥林嫂形象。

一、回顾小说的三要素:

情节、人物、环境(社会环境、自然环境)

二、分析祥林嫂形象:

小说的主题是靠人物形象来体现的。这一课的主人公就是祥林嫂。我们只有弄清楚祥林嫂的性格和命运,才能懂得《祝福》的主题。而作为人物形象又是通过故事情节──人和人之间的联系或冲突表现出来的。那么,祥林嫂究竟是一个什么样的人呢?我们就先来分析一下故事情节的开端、发展、高潮、结局,由此来把握祥林嫂的形象,领会《祝福》的主题。

1.开端:

①祥林嫂为什么要到鲁家做工?

小说的一开始,祥林嫂就是封建的宗法制度的牺牲品。因为正是父母之命,媒妁之言,迫使她嫁给一个比她小十岁的丈夫,而丈夫又过早地丧了命。祥林嫂因此陷入了嫁而守寡的悲惨的命运之中。按理说,年纪大约二十六七的祥林嫂是完全可以用自己的劳动在农村生活下去的,可是她家里还有严厉的婆婆,于是祥林嫂才被迫逃到鲁四老爷家里。

②祥林嫂是怎样对待使她嫁而守寡、备受虐待的宗法制度的呢?

作者通过祥林嫂在鲁家生活的情况,写出了她的争扎与反抗。

③祥林嫂在鲁家的生活是极其悲惨的:为什么说她反满足?

她希望凭借辛勤的劳动来换取起码的生活,寻求一条活路。这就鲜明地揭示出她勤劳、善良、质朴、顽强的性格,以及在生活道路上的争扎。

然而,勤劳、善良的祥林嫂想通过加倍的劳动来摆脱悲惨的命运的愿望,很快破灭了。她在鲁家做工只三个半月,由于鲁四老爷的支持(P:既然她的婆婆要她回去可说呢),被她婆婆像捆牲口一样,捆了躺在船板上,被抢了回去,封建的族权再次向她伸出了魔掌。

2.发展:

祥林嫂被迫改嫁到深山野是故事情节的发展。在这一部分中,哪些地方写出了封建宗法制度对祥林嫂的迫害而显示出了这种迫害是很残酷的呢?

高一数学教案 篇12

教学目标:

1、掌握对数的运算性质,并能理解推导这些法则的依据和过程;

2、能较熟练地运用法则解决问题;

教学重点:

对数的运算性质

教学过程:

一、问题情境:

1、指数幂的运算性质;

2、问题:对数运算也有相应的运算性质吗?

二、学生活动:

1、观察教材P59的表2—3—1,验证对数运算性质、

2、理解对数的运算性质、

3、证明对数性质、

三、建构数学:

1)引导学生验证对数的运算性质、

2)推导和证明对数运算性质、

3)运用对数运算性质解题、

探究:

①简易语言表达:“积的对数=对数的和”……

②有时逆向运用公式运算:如

③真数的取值范围必须是:不成立;不成立、

④注意:,

四、数学运用:

1、例题:

例1、(教材P60例4)求下列各式的值:

(1);(2)125;(3)(补充)lg、

例2、(教材P60例4)已知,,求下列各式的值(结果保留4位小数)

(1);(2)、

例3、用,,表示下列各式:

例4、计算:

(1);(2);(3)

2、练习:

P60(练习)1,2,4,5、

五、回顾小结:

本节课学习了以下内容:对数的运算法则,公式的逆向使用、

六、课外作业:

P63习题5

补充:

1、求下列各式的值:

(1)6—3;(2)lg5+lg2;(3)3+、

2、用lgx,lgy,lgz表示下列各式:

(1)lg(xyz);(2)lg;(3);(4)、

3、已知lg2=0、3010,lg3=0、4771,求下列各对数的值(精确到小数点后第四位)

(1)lg6;(2)lg;(3)lg;(4)lg32、

高一数学教案 篇13

教材:逻辑联结词

目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。

过程:

一、提出课题:简单逻辑、逻辑联结词

二、命题的概念:

例:125 ① 3是12的约数 ② 0.5是整数 ③

定义:可以判断真假的语句叫命题。正确的叫真命题,错误的叫假命题。

如:①②是真命题,③是假命题

反例:3是12的约数吗? x5 都不是命题

不涉及真假(问题) 无法判断真假

上述①②③是简单命题。 这种含有变量的语句叫开语句(条件命题)。

三、复合命题:

1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。

2.例:

(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

(2)菱形的对角线互相 菱形的对角线互相垂直且菱形的

垂直且平分⑤ 对角线互相平分

(3)0.5非整数⑥ 非0.5是整数

观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。

3.其实,有些概念前面已遇到过

如:或:不等式 x2x60的解集 { x | x2或x3 }

且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

四、复合命题的构成形式

如果用 p, q, r, s表示命题,则复合命题的形式接触过的有以下三种:

即: p或q (如 ④) 记作 pq

p且q (如 ⑤) 记作 pq

非p (命题的否定) (如 ⑥) 记作 p

小结:1.命题 2.复合命题 3.复合命题的构成形式

高一数学教案 篇14

同情他的人,也把他推向深渊,这更显示出悲剧的可悲。柳妈正是这样一个同情祥林嫂而又给她痛苦的人。

第四课时

本课时重点分析写作特点。

一、检查作业:

二、分析、讨论写作特点:

1.精当的环境描写。

作者巧妙地把祥林嫂悲剧性格上的几次重大变化,都集中在鲁镇祝福的特定的环境里,三次有关祝福的描写,不但表现了祥林嫂悲剧的典型环境,而且也印下祥林嫂悲惨一生的足迹。

①第一次是描写镇上各家准备祝福的情景。

祝福是鲁镇年终的大典,富人们要在这一天迎接福神,拜求来年一年的好运气,以便继续他们贪得无厌的幸福生活,而制作福礼却要像祥林嫂一样的女人臂膊在水里浸得通红,没日没夜地付出自己的艰辛,可见富人们所祈求的幸福,是建立在榨取这些廉价奴隶的血汗之上的。这样通过环境描写就揭露了人与人之间的矛盾冲突,预示了祥林嫂悲剧的社会性。同时,通过年年如此,家家如此,今年自然也如此的描写,也显示了辛亥革命以后中国农村的状况:阶级关系依旧,风俗习惯依旧;人们的思想意识依旧。一句话,封建势力和封建迷信思想对农村的统治依旧。这样,通过环境描写,就揭示出祥林嫂悲剧的社会根源,预示了祥林嫂悲剧的必然性。

②第二次是对鲁四老爷家祝福的描写。

祝福本身就是旧社会最富有特色的封建迷信活动,所以在祝福时封建宗法思想和反动的理学观念也表现得最为强烈,在鲁四老爷不准败坏风俗的祥林嫂沾手的告诫下,祥林嫂失去了祝福的权力。她为了求取这点权力,用历来积存的工钱捐了一条赎罪的门槛,但所得到的仍是你放着罢,祥林嫂。这样一句喝令,就粉碎了她生前免于侮辱,死后免于痛苦的愿望,她的一切挣扎的希望都在这一句喝令中破灭了。就这样,鲁四老爷在祝福的时刻凭着封建宗法思想和封建礼教的淫威,把祥林嫂一步步逼上死亡的道路。

特定的环境描写,推动了情节的发展,同时也增加了人物形象的真实感与感染力。

③第三次是结尾通过我的感受对祝福景象的描写。

祥林嫂死的惨象和天地圣众预备给鲁镇的人们以无限的幸福的气氛,形成鲜明的对照,深化了对旧社会杀人本质的揭露,同时在布局上也起到了首尾呼应,使小说结构更臻完善的作用。

2.富有特色的人物刻画:

①肖像描写:

三次变化:

②画眼睛(眼神):

3.倒叙的手法:

三、小结:

以《祝福》为题的意义:

1.小说起于祝福,结于祝福,中间一再写到祝福,情节的发展与祝福有着密切的关系。

2.封建势力通过祝福杀害了祥林嫂,祥林嫂又死于天地圣众预备给鲁镇的人们以无限的幸福的祝福声中。通过这个标题,就把凶人的愚顽的欢呼和悲惨的弱者的不幸,鲜明地摆到读者的面前,形成强烈的对比,在表现主题方面更增强了祥林嫂遭遇的悲剧性。

鲁迅作品的抛锚式教学初探

黄晓莉

抛锚式教学(AnchoredInstruction)模式是建立在建构主义学习理论下的一种重要的教学模式。建构主义学习理论认为,学习过程不是学习者被动地接受知识,而是积极地建构知识的过程。建构主义学习活动强调以学习者为中心,引发学习者的学习兴趣和动机,促使他们进行真实的学习。所谓抛锚式教学,是要求教学建立在有感染力的真实事件或真实问题的基础上,通过学生间的互动、交流,凭借学生的主动学习、生成学习,亲身体验从识别目标、提出目标到达到目标的全过程。这类真实事例或问题就作为锚,而建立和确定这些事件或问题就可形象地比喻为抛锚。一旦这类事件或问题被确定了,整个学习内容和学习进程也就像轮船被锚固定一样而被确定了。

在中学语文教材中,鲁迅的作品占有非常重要的地位。回顾语文教材编选鲁迅作品的历史,可以清楚地看出,近80年来,特别是五四运动之后,不论中国社会的政治和经济形势发生了多么深刻的变化,也不论人们的思想观念和价值取向表现出怎样多元化的倾向,中学语文教材中鲁迅作品的地位越来越重要,其作品数量也渐为古今中外名家之首。但由于鲁迅的作品既富于思想深度,又比较重视行文的技巧,在实际教学过程中,教师们普遍认为鲁迅的文章往往比较难教,学生则觉得较难理解。而运用抛锚式教学,则可以有效地解决这个问题。

一、鲁迅作品的思想内涵和语言艺术特点

鲁迅小说及其它作品,是思想内容和艺术形式的完美的统一体。对鲁迅作品的理解,很大程度上取决于对其作品的思想性和文法特点的理解和把握。

(一)鲁迅作品的思想内涵

鲁迅作品有着深刻的思想内涵。其具体表现在:

1.对传统文化的反省

鲁迅是第一个告别传统文化的文人。他超越了历史和价值,超越了感情与理智,对传统文化思想进了整体反省。比如,鲁迅的小说集中地、真实地反映了传统文化的背景下的中国近代农村的社会现实,在其小说的宁静、平淡中透露出遮掩不住的沉闷和令人窒息的气息。

2.重视人文性与思想性

没有人文背景的文章,在鲁迅的作品里几乎是没有的。鲁迅在传统文化的广阔背景之上,表现了社会的变迁,意识的骚动与沉寂,人物的喜怒哀乐、悲欢离合。作者深深地切入传统文化稳定结构的内核,探究人物活动的内在因素,揭示传统文化下人物、社会、历史的必然。

3.强烈的时代责任感和社会责任感

鲁迅的许多作品,表现了他强烈的时代责任感和社会责任感。他揭露反动军阀的凶残卑劣及其走狗文人的阴险无耻,激励人们继续战斗。这是鲁迅先生一贯精神的表露。

(二)鲁迅作品的语言艺术特点

鲁迅的许多作品用笔深刻冷隽,句法简洁生动,体裁新颖独创,堪称是语言艺术的典范。

1.娴熟的文法

鲁迅的小说已形成了他的风格。他比较喜欢用倒叙的方法,常以此切入正题。这种方法完全打破了传统章回小说的老套路,避免了小说叙事中的拖沓与冗长,而直接把读者引入了作者的叙述空间,更便于作品主题思想的揭露。

2.细腻的描写和合理的剪裁

鲁迅作品的叙述极有条理,凡与主题无关的内容他绝不提及,但又十分注意使主题在含蕴百迭中得到升华。但凡文中的故事,一定是很完整的,其细节的刻划也非常细腻。比如:阿Q干什么活,祥林嫂怎么死的,孔乙己如何隐身而亡,迅哥儿的故乡又是如何变化的等等,没有不认真雕凿的。

3.体裁的多样性与灵活性

鲁迅在文艺创新中,作过了各种尝试:超现实主义的日记形式(《狂人日记》)、象征主义(《药》)、简短复述(《一件小事》)、持续独白(《头发的故事》)、集体的讽刺(《风波》)、自传体小说(《故乡》)、谐谑史诗(《阿Q正传》)、反讽(《伤逝》)等等,围绕叙述这个核心表现出了高度灵活性,充分体现了文学大师熟稔的写作技巧。

4.追求简洁生动的文字效果

鲁迅作品的遣词造句与众不同,用字造句都经过深思熟虑、千锤百炼,这正是他的作品具有深厚的吸引力的一个重要原因。这里既有鲁迅字斟句酌的文字运用的态度问题,也有他对文字表达的刻意追求。例如,他最恨的是那些以道学先生自命的人,所以他描写脑筋简单的乡下人时用笔比较宽容;但一写到《阿Q正传》里的赵太爷、《祝福》里的鲁四老爷等等,便针针见血,丝毫不肯容情了。他写《阿Q正传》看起来是为了痛陈阿Q这类人,想淋漓尽致地将他的丑态形容一下。然而在读到阿Q被枪毙这段情节时,我们就能从字里行间里觉得真正可恶的还是那些赵太爷、钱举人、把总老爷这些土豪劣绅,阿Q不过做了他们的牺牲品罢了。

二、鲁迅作品教学中的抛锚式教学策略

上文谈到,鲁迅的作品由于其独有的特点,使得其教学有一定的难度。如何以学生为主体,以教师为主导,把一篇难度较大的文章化繁为简传输给学生,使他们既能接受到语言的能力训练,又能使其从中感受到文学作品的艺术魅力,这确实需要我们进行多方面的思考。在教学中,我发现抛锚式教学是一个比较好的策略。其主要的方法,就是从组织有感染力的真实事件或真实问题入手来展开教学,鼓励学生自主学习和协作学习,并在此过程中寻求对作品的理解。

GZ85.com延伸阅读

高中数学教案14篇


您能在以下资源中找到跟您所需相关的“高中数学教案”资料,感谢你的阅读希望这篇文章能够给你带来启示并请与你的家人分享。教案课件在老师少不了一项工作事项,写教案课件是每个老师每天都在从事的事情。 学生反应的准确性可以帮助教师消除教学中的顾虑。

高中数学教案(篇1)

1.课题

填写课题名称(高中代数类课题)

2.教学目标

(1)知识与技能:

通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;

(2)过程与方法:

通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;

(3)情感态度与价值观:

通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点

(1)教学重点:本节课的知识重点

(2)教学难点:易错点、难以理解的知识点

4.教学方法(一般从中选择3个就可以了)

(1)讨论法

(2)情景教学法

(3)问答法

(4)发现法

(5)讲授法

5.教学过程

(1)导入

简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

(2)新授课程(一般分为三个小步骤)

①简单讲解本节课基础知识点(例:奇函数的定义)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

(在新授课里面一定要表下出讲课的`大体流程,但是不必太过详细。)

(3)课堂小结

教师提问,学生回答本节课的收获。

(4)作业提高

布置作业(尽量与实际生活相联系,有所创新)。

6.教学板书

2.高中数学教案格式

一.课题(说明本课名称)

二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)

三.课型(说明属新授课,还是复习课)

四.课时(说明属第几课时)

五.教学重点(说明本课所必须解决的关键性问题)

六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)

七.教学方法要根据学生实际,注重引导自学,注重启发思维

八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)

九.作业处理(说明如何布置书面或口头作业)

十.板书设计(说明上课时准备写在黑板上的内容)

十一.教具(或称教具准备,说明辅助教学手段使用的工具)

十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)

3.高中数学教案范文

【教学目标】

1.知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2.过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

高中数学教案(篇2)

三角函数的周期性

一、学习目标与自我评估

1 掌握利用单位圆的几何方法作函数 的图象

2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期

3 会用代数方法求 等函数的周期

4 理解周期性的几何意义

 二、学习重点与难点

“周期函数的概念”, 周期的求解。

三、学法指导

1、 是周期函数是指对定义域中所有都有,即应是恒等式。

2、周期函数一定会有周期,但不一定存在最小正周期。

四、学习活动与意义建构

五、重点与难点探究

例1、若钟摆的高度 与时间 之间的函数关系如图所示

(1)求该函数的周期;

(2)求 时钟摆的高度。

例2、求下列函数的周期。

(1) (2)

总结:(1)函数 (其中均为常数,且的周期T=xx)

(2)函数 (其中 均为常数,且的周期T=xx)

例3、求证: 的周期为 。

例4、(1)研究 和 函数的图象,分析其周期性。(2)求证: 的周期为 (其中 均为常数,

总结:函数 (其中 均为常数,且的周期T= 。

例5、(1)求 的周期。

(2)已知 满足 ,求证: 是周期函数

课后思考:能否利用单位圆作函数 的图象。

六、作业:

七、自主体验与运用

高中数学教案(篇3)

教学目标

(1)使学生正确理解组合的意义,正确区分排列、组合问题;

(2)使学生掌握组合数的计算公式;

(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

教学重点难点

重点是组合的定义、组合数及组合数的公式;

难点是解组合的应用题.

教学过程设计

(-)导入新课

(教师活动)提出下列思考问题,打出字幕.

[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

(学生活动)讨论并回答.

答案提示:(1)排列;(2)组合.

[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.

(二)新课讲授

[提出问题 创设情境]

(教师活动)指导学生带着问题阅读课文.

[字幕]1.排列的定义是什么?

2.举例说明一个组合是什么?

3.一个组合与一个排列有何区别?

(学生活动)阅读回答.

(教师活动)对照课文,逐一评析.

设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

【归纳概括 建立新知】

(教师活动)承接上述问题的回答,展示下面知识.

[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

(学生活动)倾听、思索、记录.

(教师活动)提出思考问题.

[投影] 与 的关系如何?

(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

第2步,求每一个组合中 个元素的全排列数为 .

根据分步计数原理,得到

[字幕]公式1:

公式2:

(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

(三)小结

(师生活动)共同小结.

本节主要内容有

1.组合概念.

2.组合数计算的两个公式.

(四)布置作业

1.课本作业:习题10 3第1(1)、(4),3题.

2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

3.研究性题:

在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

(五)课后点评

在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

作业参考答案

2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或 或2.即男同学有5人或6人,女同学相应为3人或2人.

3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.

探究活动

同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?

解 设四人分别为甲、乙、丙、丁,可从多种角度来解.

解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:

甲拿乙制作的贺卡时,则贺卡有3种分配方法.

甲拿丙制作的贺卡时,则贺卡有3种分配方法.

甲拿丁制作的贺卡时,则贺卡有3种分配方法.

由加法原理得,贺卡分配方法有3+3+3=9种.

解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.

正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).

逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有 (种).

高中数学教案(篇4)

三维目标:

1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;

2、过程与方法:

(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;

(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

教学方法:

讲练结合法

教学用具:

多媒体

课时安排:

1课时

教学过程:

一、问题情境

假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?

二、探究新知

1、统计的有关概念:总体:在统计学中,所有考察对象的全体叫做总体、个体:每一个考察的对象叫做个体、样本:从总体中抽取的一部分个体叫做总体的一个样本、样本容量:样本中个体的数目叫做样本的容量、统计的基本思想:用样本去估计总体、

2、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

下列抽样的方式是否属于简单随机抽样?为什么?

(1)从无限多个个体中抽取50个个体作为样本。

(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。

(3)从8台电脑中,不放回地随机抽取2台进行质量检查(假设8台电脑已编好号,对编号随机抽取)

3、常用的简单随机抽样方法有:

(1)抽签法的定义。一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

思考?你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?例1、若已知高一(6)班总共有57人,现要抽取8位同学出来做游戏,请设计一个抽取的方法,要使得每位同学被抽到的机会相等。

分析:可以把57位同学的学号分别写在大小,质地都相同的纸片上,折叠或揉成小球,把纸片集中在一起并充分搅拌后,在从中个抽出8张纸片,再选出纸片上的学号对应的同学即可、基本步骤:第一步:将总体的所有N个个体从1至N编号;第二步:准备N个号签分别标上这些编号,将号签放在容器中搅拌均匀后每次抽取一个号签,不放回地连续取n次;第三步:将取出的n个号签上的号码所对应的n个个体作为样本。

(2)随机数法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。第一步,先将800袋牛奶编号,可以编为000,001,799。

第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785

继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。

三、课堂练习

四、课堂小结

1、简单随机抽样的概念一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

2、简单随机抽样的方法:抽签法随机数表法

五、课后作业

P57练习1、2

六、板书设计

1、统计的有关概念

2、简单随机抽样的概念

3、常用的简单随机抽样方法有:(1)抽签法(2)随机数表法

4、课堂练习

高中数学教案(篇5)

教学目标:

(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.

(2)进一步理解曲线的方程和方程的曲线.

(3)初步掌握求曲线方程的方法.

(4)通过本节内容的教学,培养学生分析问题和转化的能力.

教学重点、难点:求曲线的方程.

教学用具:计算机.

教学方法:启发引导法,讨论法.

教学过程:

【引入】

1.提问:什么是曲线的方程和方程的曲线.

学生思考并回答.教师强调.

2.坐标法和解析几何的意义、基本问题.

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:

(1)根据已知条件,求出表示平面曲线的方程.

(2)通过方程,研究平面曲线的性质.

事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.

【问题】

如何根据已知条件,求出曲线的方程.

【实例分析】

例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.

首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

解法一:易求线段的中点坐标为(1,3),

由斜率关系可求得l的斜率为

于是有

即l的方程为

分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

证明:(1)曲线上的点的坐标都是这个方程的解.

设是线段的垂直平分线上任意一点,则

将上式两边平方,整理得

这说明点的坐标是方程的解.

(2)以这个方程的解为坐标的点都是曲线上的点.

设点的坐标是方程①的任意一解,则

到、的距离分别为

所以,即点在直线上.

综合(1)、(2),①是所求直线的方程.

至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

由两点间的距离公式,点所适合的条件可表示为

将上式两边平方,整理得

果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

让我们用这个方法试解如下问题:

例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.

分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

求解过程略.

【概括总结】通过学生讨论,师生共同总结:

分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

(2)写出适合条件的点的集合

;

(3)用坐标表示条件,列出方程;

(4)化方程为最简形式;

(5)证明以化简后的方程的解为坐标的点都是曲线上的点.

一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.

上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.

下面再看一个问题:

例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.

【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.

解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

由距离公式,点适合的条件可表示为

将①式移项后再两边平方,得

化简得

由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.

【练习巩固】

题目:在正三角形内有一动点,已知到三个顶点的距离分别为、 、,且有,求点轨迹方程.

分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.

根据条件,代入坐标可得

化简得

由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

【小结】师生共同总结:

(1)解析几何研究研究问题的方法是什么?

(2)如何求曲线的方程?

(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?

【作业】课本第72页练习1,2,3;

高中数学教案模板 篇2

教学准备

教学目标

数列求和的综合应用

教学重难点

数列求和的综合应用

教学过程

典例分析

3.数列{an}的前n项和Sn=n2-7n-8,

(1)求{an}的通项公式

(2)求{|an|}的前n项和Tn

4.等差数列{an}的公差为,S100=145,则a1+a3+a5+…+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=

6.数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=anxn,求数列{bn}前n项和公式

7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

8.在等差数列{an}中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有最大值,并求出它的最大值

.已知数列{an},an∈N,Sn=(an+2)2

(1)求证{an}是等差数列

(2)若bn=an-30,求数列{bn}前n项的最小值

0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N)

(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列

(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.

11.购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

12.某商品在最近100天内的价格f(t)与时间t的

函数关系式是f(t)=销售量g(t)与时间t的函数关系是g(t)=-t/3+109/3(0≤t≤100)

求这种商品的日销售额的最大值

注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值

高中数学教案模板 篇3

一、课程性质与任务

数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构

本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求

(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

了解:初步知道知识的含义及其简单应用。

理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

(二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)

第2单元不等式(8学时)

第3单元函数(12学时)

第4单元指数函数与对数函数(12学时)

第5单元三角函数(18学时)

第6单元数列(10学时)

第7单元平面向量(矢量)(10学时)

第8单元直线和圆的方程(18学时)

第9单元立体几何(14学时)

第10单元概率与统计初步(16学时)

2.职业模块

第1单元三角计算及其应用(16学时)

第2单元坐标变换与参数方程(12学时)

第3单元复数及其应用(10学时)

高中数学教案模板 篇4

教学目标:

1、结合实际问题情景,理解分层抽样的必要性和重要性;

2、学会用分层抽样的方法从总体中抽取样本;

3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。

教学重点:

通过实例理解分层抽样的方法。

教学难点:

分层抽样的步骤。

教学过程:

一、问题情境

1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。

2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是。即40,32,28。

三、建构数学

1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。

2、三种抽样方法对照表:

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率是相同的

从总体中逐个抽取

总体中的个体数较少

系统抽样

将总体均分成几个部分,按事先确定的规则在各部分抽取

在第一部分抽样时采用简单随机抽样

总体中的个体数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统

总体由差异明显的几部分组成

3、分层抽样的步骤:

(1)分层:将总体按某种特征分成若干部分。

(2)确定比例:计算各层的个体数与总体的个体数的比。

(3)确定各层应抽取的样本容量。

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本。

四、数学运用

1、例题。

例1(1)分层抽样中,在每一层进行抽样可用_________________。

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格。现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”。

对这三件事,合适的抽样方法为

A、分层抽样,分层抽样,简单随机抽样

B、系统抽样,系统抽样,简单随机抽样

C、分层抽样,简单随机抽样,简单随机抽样

D、系统抽样,分层抽样,简单随机抽样

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

很喜爱

喜爱

一般

不喜爱

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5。

然后在各层用简单随机抽样方法抽取。

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5。

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值。

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名。为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本。

分析:(1)总体容量较小,用抽签法或随机数表法都很方便。

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样。

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法。

五、要点归纳与方法小结

本节课学习了以下内容:

1、分层抽样的概念与特征;

2、三种抽样方法相互之间的区别与联系。

高中数学教案模板 篇5

教学目标:

(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.

(2)进一步理解曲线的方程和方程的曲线.

(3)初步掌握求曲线方程的方法.

(4)通过本节内容的教学,培养学生分析问题和转化的能力.

教学重点、难点:求曲线的方程.

教学用具:计算机.

教学方法:启发引导法,讨论法.

教学过程:

【引入】

1.提问:什么是曲线的方程和方程的曲线.

学生思考并回答.教师强调.

2.坐标法和解析几何的意义、基本问题.

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:

(1)根据已知条件,求出表示平面曲线的方程.

(2)通过方程,研究平面曲线的性质.

事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.

【问题】

如何根据已知条件,求出曲线的方程.

【实例分析】

例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.

首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

解法一:易求线段的中点坐标为(1,3),

由斜率关系可求得l的斜率为

于是有

即l的方程为

分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

证明:(1)曲线上的点的坐标都是这个方程的解.

设是线段的垂直平分线上任意一点,则

将上式两边平方,整理得

这说明点的坐标是方程的解.

(2)以这个方程的解为坐标的点都是曲线上的点.

设点的坐标是方程①的任意一解,则

到、的距离分别为

所以,即点在直线上.

综合(1)、(2),①是所求直线的方程.

至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

由两点间的距离公式,点所适合的条件可表示为

将上式两边平方,整理得

果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

让我们用这个方法试解如下问题:

例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.

分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

求解过程略.

【概括总结】通过学生讨论,师生共同总结:

分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

(2)写出适合条件的点的集合

;

(3)用坐标表示条件,列出方程;

(4)化方程为最简形式;

(5)证明以化简后的方程的解为坐标的点都是曲线上的点.

一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.

上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.

下面再看一个问题:

例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.

【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.

解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

由距离公式,点适合的条件可表示为

将①式移项后再两边平方,得

化简得

由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.

【练习巩固】

题目:在正三角形内有一动点,已知到三个顶点的距离分别为、 、,且有,求点轨迹方程.

分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.

根据条件,代入坐标可得

化简得

由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

【小结】师生共同总结:

(1)解析几何研究研究问题的方法是什么?

(2)如何求曲线的方程?

(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?

【作业】课本第72页练习1,2,3;

高中数学教案(篇6)

教学目标

(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题。

(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念。

(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点。

(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法。

(5)进一步理解数形结合的思想方法。

教学建议

教材分析

(1)知识结构

曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质。曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序。前者回答什么是曲线方程,后者解决如何求出曲线方程。至于用曲线方程研究曲线性质则更在其后,本节不予研究。因此,本节涉及曲线方程概念和求曲线方程两大基本问题。

(2)重点、难点分析

①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想。

②本节的难点是曲线方程的概念和求曲线方程的方法。

教法建议

(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系。曲线与方程对应关系的基础是点与坐标的对应关系。注意强调曲线方程的完备性和纯粹性。

(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备。

(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。

(4)从集合与对应的观点可以看得更清楚:

设 表示曲线 上适合某种条件的点 的集合;

表示二元方程的解对应的点的坐标的集合。

可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。

这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即

文字语言中的几何条件 数学符号语言中的等式 数学符号语言中含动点坐标 , 的代数方程 简化了的 , 的代数方程

由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”

(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。

高中数学教案(篇7)

《简单的逻辑联结词》

【学情分析】:

(1)“常用逻辑用语”是帮助学生正确使用常用逻辑用语,更好的理解数学内容中的逻辑关系,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流,避免在使用过程中产生错误。

(2)“常用逻辑用语”应通过实例理解,避免形式化的倾向.常用逻辑用语的教学不应当从抽象的定义出发,而应该通过数学和生活中的丰富实例理解常用逻辑用语的意义,体会常用逻辑用语的作用。对逻辑联结词“或”、“且”、“非”的含义,只要求通过数学实例加以了解,使学生正确地表述相关的数学内容。

(3)“常用逻辑用语”的学习重在使用.对于“常用逻辑用语”的学习,不仅需要用已学过的数学知识为载体,而且需要把常用逻辑用语用于后继的数学学习中。

(4)培养学生用所学知识解决综合数学问题的能力。

【教学目标】:

(1)知识目标:

通过实例,了解简单的逻辑联结词“且”、“或”的含义;

(2)过程与方法目标:

了解含有逻辑联结词“且”、“或”复合命题的构成形式,以及会对新命题作出真假的判断;

(3)情感与能力目标:

在知识学习的基础上,培养学生简单推理的技能.

【教学重点】:

通过数学实例,了解逻辑联结词“或”、“且”的含义,使学生能正确地表述相关数学内容.

【教学难点】:

简洁、准确地表述“或”命题、“且”等命题,以及对新命题真假的判断.

【教学过程设计】:

教学环节 教学活动 设计意图

情境引入 问题1:

下列三个命题间有什么关系?

(1)12能被3整除;

(2)12能被4整除;

(3)12能被3整除且能被4整除; 通过数学实例,认识用用逻辑联结词 “且”联结两个命题可以得到一个新命题;

知识建构 归纳总结:

一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,

记作 ,读作“p且q”.

引导学生通过通过一些数学实例分析,概括出一般特征。

三、自主学习 1、引导学生阅读教科书上的例1中每组命题p,q,让学生尝试写出命题 ,判断真假,纠正可能出现的逻辑错误。 学习使用逻辑联结词“且” 联结两个命题,根据“且”的含义判断逻辑联结词“且” 联结成的新命题的真假。

2、引导学生阅读教科书上的例2中每个命题,让学生尝试改写命题,判断真假,纠正可能出现的逻辑错误。

归纳总结:

当p,q都是真命题时, 是真命题,当p,q两个命题中有一个是假命题时, 是假命题,

学习使用逻辑联结词“且” 改写一些命题,根据“且”的含义判断原先命题的真假。

引导学生通过通过一些数学实例分析命题p和命题q以及命题 的真假性,概括出这三个命题的真假性之间的一般规律。

四、学生探究 问题2:

下列三个命题间有什么关系?判断真假。

(1)27是7的倍数;

(2)27是9的倍数;

(3)27是7的倍数或27是9的倍数; 通过数学实例,认识用用逻辑联结词 “或”联结两个命题可以得到一个新命题;

归纳总结

1.一般地,用逻辑联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作“p∨q”,读作“p或q”.

2.当p,q两个命题中有一个命题是真命题时,“p∨q”是真命题,当p,q两个命题中都是假命题时,“p∨q”是假命题. 引导学生通过一些数学实例分析命题p和命题q以及命题“p∨q”的真假性,概括出这三个命题的真假性之间的一般规律。

三、自主学习 1、引导学生阅读教科书上的例3中每组命题p,q,让学生尝试写出命题“p∨q”,判断真假,纠正可能出现的逻辑错误。 学习使用逻辑联结词“或” 联结两个命题,根据“或”的含义判断逻辑联结词“或” 联结成的新命题的真假。

课堂练习 课本P17 练习1,2 反馈学生掌握逻辑联结词“或”的用法和含义的情况,巩固本节课所学的基本知识。

课堂小结 1、一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作 ,读作“p且q”.

2、当p,q都是真命题时, 是真命题,当p,q两个命题中有一个是假命题时, 是假命题.

3.一般地,用逻辑联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作“p∨q”,读作“p或q”.

4.当p,q两个命题中有一个命题是真命题时,“p∨q”是真命题,当p,q两个命题中都是假命题时,“p∨q”是假命题. 归纳整理本节课所学知识。

布置作业 1. 思考题:如果 是真命题,那么p∨q一定是真命题吗?反之, 如果p∨q是真命题,那么 一定是真命题吗?

2. 课本P18 A组1,2.B组.

3. 预习新课,自主完成课后练习。(根据学生实情,选择安排)

课后练习

1.命题“正方形的两条对角线互相垂直平分”是( )

A.简单命题 B.非p形式的命题

C.p或q形式的命题 D.p且q的命题

2.命题“方程x2=2的解是x=± 是( )

A.简单命题 B.含“或”的复合命题

C.含“且”的复合命题 D.含“非”的复合命题

3.若命题 ,则┐p(  )

A. B.

C. D.

4.命题“梯形的两对角线互相不平分”的形式为( )

A.p或q B.p且q C.非p D.简单命题

5.x≤0是指 ( )

A.x0或x=0

C.x>0且x=0 D.x

6. 对命题p:A∩ = ,命题q:A∪ =A,下列说法正确的是( )

A.p且q为假 B.p或q为假

C.非p为真 D.非p为假

参考答案:

1. D 2.B 3.D 4.C 5.D 6.D

§1.3.2简单的逻辑联结词

【学情分析】:

(1)上节课已经学习了简单的逻辑联结词“且”、“或”的含义和简单运用,本节课继续学习简单的逻辑联结词“非”的含义和简单运用;

(2)一般地,对一个命题p全盘否定,就得到一个新命题,记作: p,读作“非p”或“p的否定”;了解和掌握“非”命题最常见的几个正面词语的否定:

正面

是 都是 至多有一个 至少有一个 任意的 所有的

否定

不是 不都是 至少有两个 一个也没有 某个 某些

(3)注意 “且”、“或” “非” 的含义和简单运用的区别和联系。

(4)培养学生用所学知识解决综合数学问题的能力。

【教学目标】:

(1)知识目标:

通过实例,了解简单的逻辑联结词“非”的含义;

(2)过程与方法目标:

了解含有逻辑联结词“非”复合命题的概念及其构成形式,能对逻辑联结词“非”构成命题的真假作出正确判断;

(3)情感与能力目标:

能准确区分命题的否定与否命题的区别;在知识学习的基础上,培养学生简单推理的技能。

【教学重点】:

(1)了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容;

(2)区别“或”、“且”、“非”的含义和运用的异同;

【教学难点】:

(1)简洁、准确地表述“非”命题以及对逻辑联结词“非”构成命题的真假判断;

(2)区别“或”、“且”、“非”的含义和运用的异同;

【教学过程设计】:

教学环节 教学活动 设计意图

情境引入 问题1:如果 是真命题,那么p∨q一定是真命题吗?反之, 如果p∨q是真命题,那么 一定是真命题吗?

问题2:下列两个命题间有什么关系,判断真假.

(1)35能被5整除;

(2)35不能被5整除; 通过数学实例,认识用逻辑联结词“非”构成命题可以得到一个新命题;

知识建构 归纳总结:

(1)一般地,对一个命题全盘否定就得到一个新命题,

记作 ,读作“非P”;

(2)若P是真命题,则必是假命题; 若P是假命题,则必是真命题. 引导学生通过通过一些数学实例分析,概括出一般特征。

自主学习 1、引导学生阅读教科书上的例4中每组命题p让学生尝试写出命题 ,判断真假,纠正可能出现的逻辑错误.

学习使用逻辑联结词“非”构成一个新命题,根据“非”的含义判断逻辑联结词“非”构成命题的真假。

2:写出下列命题的非命题:

(1)p:对任意实数x,均有x2-2x+1≥0;

(2)q:存在一个实数x,使得x2-9=0

(3)“AB∥CD”且“AB=CD”;

(4)“△ABC是直角三角形或等腰三角形”.

解:(1)存在一个实数x,使得x2-2x+1

(2)不存在一个实数x,使得x2-9=0;

(3)AB不平行于CD或AB≠CD;

(4)原命题是“p或q”形式的复合命题,它的否定形式是:△ABC既不是直角三角形又不是等腰三角形.

学生探究 指出下列命题的构成形式及真假:并指出“或”、“且”、“非”的区别与联系.

(1) 不等式 没有实数解;

(2) -1是偶数或奇数;

(3) 属于集合Q,也属于集合R;

(4)

解:(1)此命题是“非p”形式,是假命题。

(2)此命题是“p∨q”形式,此命题是真命题。

(3)此命题是 “p∧q”形式,此命题是假命题。

(4)此命题是“非p”形式,是假命题。 通过探究,归纳总结判断“p且q”、 “p或q”、 “非p”形式的命题真假的方法。

归纳总结:

1.“p且q”形式的复合命题真假:

当p、q为真时,p且q为真; 当p、q中至少有一个为假时,p且q为假。(一假必假)

p q p且q

真 真 真

真 假 假

假 真 假

假 假 假

2.“p或q”形式的复合命题真假:

当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假。(一真必真)

p q P或q

真 真 真

真 假 真

假 真 真

假 假 假

3.“非p”形式的复合命题真假:

当p为真时,非p为假; 当p为假时,非p为真.(真假相反)

p 非p

真 假

假 真

引导学生通过通过一些数学实例分析,概括出一般特征。

提高练习 1.分别指出由下列各组命题构成的p或q、p且q、非p形式的复合命题的真假:

(1)p:2+2=5; q:3>2

(2)p:9是质数; q:8是12的约数;

(3)p:1∈{1,2}; q:{1} {1,2}

(4)p: {0}; q: {0}

解:①p或q:2+2=5或3>2 ;p且q:2+2=5且3>2 ;非p:2+2 5.

∵p假q真,∴“p或q”为真,“p且q”为假,“非p”为真.

②p或q:9是质数或8是12的约数;p且q:9是质数且8是12的约数;非p:9不是质数.

∵p假q假,∴“p或q”为假,“p且q”为假,“非p”为真.

③p或q:1∈{1,2}或{1} {1,2};p且q:1∈{1,2}且{1} {1,2};

非p:1 {1,2}.

∵p真q真,∴“p或q”为真,“p且q”为真,“非p”为假.

④p或q:φ {0}或φ={0};p且q:φ {0}且φ={0} ;非p:φ {0}.

∵p真q假,∴“p或q”为真,“p且q”为假,“非p”为假.

通过练习,使学生更进一步理解“p且q”、 “p或q”、 “非p”形式的命题的形式特点以及判断真假的规律,区别“非”命题与否命题。

课堂小结

(1)一般地,对一个命题全盘否定就得到一个新命题,

记作 ,读作“非P”;

(2)若P是真命题,则必是假命题; 若P是假命题,则必是真命题.

(3)1.“ p且q”形式的复合命题真假:

当p、q为真时,p且q为真; 当p、q中至少有一个为假时,p且q为假。(一假必假)

p q p且q

真 真 真

真 假 假

假 真 假

假 假 假

2.“p或q”形式的复合命题真假:

当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假。(一真必真)

p q P或q

真 真 真

真 假 真

假 真 真

假 假 假

(

3.“非p”形式的复合命题真假:

当p为真时,非p为假; 当p为假时,非p为真.(真假相反)

p 非p

真 假

假 真

归纳整理本节课所学知识。反馈学生掌握逻辑联结词“且”的用法和含义的情况,巩固本节课所学的基本知识。

布置作业 1. 课本P18 A组3.

2. 见课后练习

课后练习

1.如果命题p是假命题,命题q是真命题,则下列错误的是( )

A.“p且q”是假命题 B.“p或q”是真命题

C.“非p”是真命题 D.“非q”是真命题

2.下列命题是真命题的有( )

A.5>2且74或3

C.7≥8 D.方程x2-3x+4=0的判别式Δ≥0

3.若命题p:2n-1是奇数,q:2n+1是偶数,则下列说法中正确的是 ( )

A.p或q为真 B.p且q为真 C. 非p为真 D. 非p为假

4.如果命题“非p”与命题“p或q”都是真命题,那么( )

A.命题p与命题q的真值相同 B.命题q一定是真命题

C.命题q不一定是真命题 D.命题p不一定是真命题

5.由下列各组命题构成的复合命题中,“p或q”为真,“p且q”为假,

“非p”为真的一组为( )

A.p:3为偶数,q:4为奇数 B.p:π3

C.p:a∈{a,b},q:{a} {a,b} D.p:Q R,q:N=Z

6. 在下列结论中,正确的是( )

① 为真是 为真的充分不必要条件;

② 为假是 为真的充分不必要条件;

③ 为真是 为假的必要不充分条件;

④ 为真是 为假的必要不充分条件;

A. ①② B. ①③ C. ②④ D. ③④

参考答案:

1. D 2.A 3.B 4.B 5.B 6.B

高中数学教案(篇8)

课题:

等比数列的概念

教学目标

1、通过教学使学生理解等比数列的概念,推导并掌握通项公式、

2、使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力、

3、培养学生勤于思考,实事求是的精神,及严谨的科学态度、

教学重点,难点

重点、难点是等比数列的定义的归纳及通项公式的推导、

教学用具

投影仪,多媒体软件,电脑、

教学方法

讨论、谈话法、

教学过程

一、提出问题

给出以下几组数列,将它们分类,说出分类标准、(幻灯片)

①—2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,—1,1,—1,1,—1,1,—1,…

⑦1,—10,100,—1000,10000,—100000,…

⑧0,0,0,0,0,0,0,…

由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)、

二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题、假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数

这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列、(这里播放变形虫分裂的多媒体软件的第一步)

等比数列(板书)

1、等比数列的定义(板书)

根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义、学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的教师写出等比数列的定义,标注出重点词语、

请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列、学生通过观察可以发现③是这样的.数列,教师再追问,还有没有其他的例子,让学生再举两例、而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列、教师追问理由,引出对等比数列的认识:

2、对定义的认识(板书)

(1)等比数列的首项不为0;

(2)等比数列的每一项都不为0,即

问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

(3)公比不为0、

用数学式子表示等比数列的定义、

是等比数列

①、在这个式子的写法上可能会有一些争议,如写成

,可让学生研究行不行,好不好;接下来再问,能否改写为

是等比数列?为什么不能?式子给出了数列第项与第

项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式、

3、等比数列的通项公式(板书)

问题:用和表示第项

①不完全归纳法

②叠乘法,…,,这个式子相乘得,所以(板书)

(1)等比数列的通项公式得出通项公式后,让学生思考如何认识通项公式、(板书)

(2)对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想(因在等差数列中已有认识,此处再复习巩固而已)、

这里强调方程思想解决问题、方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题)、解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究、同学可以试着编几道题。

三、小结

1、本节课研究了等比数列的概念,得到了通项公式;

2、注意在研究内容与方法上要与等差数列相类比;

3、用方程的思想认识通项公式,并加以应用。

探究活动

将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0、01毫米。

参考答案:

30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0、001毫米,对折34次就超过珠穆朗玛峰的高度了、还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(对数算也行)。

高中数学教案(篇9)

教学目标

知识与技能目标:

本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:

(1)通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。

(2)从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。

(3)依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。即:

导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k

在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。

过程与方法目标:

(1)学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。

(2)学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。

(3)结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。

情感、态度、价值观:

(1)通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;

(2)在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。

教学重点与难点

重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。

难点:发现、理解及应用导数的几何意义。

教学过程

一、复习提问

1.导数的定义是什么?求导数的三个步骤是什么?求函数y=x2在x=2处的导数.

定义:函数在导数的几何意义教案处的导数导数的几何意义教案就是函数在该点处的瞬时变化率。

求导数的步骤:

第一步:求平均变化率导数的几何意义教案;

第二步:求瞬时变化率导数的几何意义教案.

(即导数的几何意义教案,平均变化率趋近于的确定常数就是该点导数)

2.观察函数导数的几何意义教案的图象,平均变化率导数的几何意义教案在图形中表示什么?

生:平均变化率表示的是割线PQ的斜率.导数的几何意义教案

师:这就是平均变化率(导数的几何意义教案)的几何意义,

3.瞬时变化率(导数的几何意义教案)在图中又表示什么呢?

如图2-1,设曲线C是函数y=f(x)的图象,点P(x0,y0)是曲线C上一点.点Q(x0+Δx,y0+Δy)是曲线C上与点P邻近的任一点,作割线PQ,当点Q沿着曲线C无限地趋近于点P,割线PQ便无限地趋近于某一极限位置PT,我们就把极限位置上的直线PT,叫做曲线C在点P处的切线.

导数的几何意义教案

追问:怎样确定曲线C在点P的切线呢?因为P是给定的,根据平面解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ的倾斜角为导数的几何意义教案,切线PT的倾斜角为导数的几何意义教案,易知割线PQ的斜率为导数的几何意义教案。既然割线PQ的极限位置上的直线PT是切线,所以割线PQ斜率的极限就是切线PT的斜率导数的几何意义教案,即导数的几何意义教案。

由导数的定义知导数的几何意义教案导数的几何意义教案。

导数的几何意义教案

由上式可知:曲线f(x)在点(x0,f(x0))处的切线的斜率就是y=f(x)在点x0处的导数f'(x0).今天我们就来探究导数的几何意义。

C类学生回答第1题,A,B类学生回答第2题在学生回答基础上教师重点讲评第3题,然后逐步引入导数的几何意义.

二、新课

1、导数的几何意义:

函数y=f(x)在点x0处的导数f'(x0)的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率.

即:导数的几何意义教案

口答练习:

(1)如果函数y=f(x)在已知点x0处的导数分别为下列情况f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.试求函数图像在对应点的切线的倾斜角,并说明切线各有什么特征。

(C层学生做)

(2)已知函数y=f(x)的图象(如图2-2),分别为以下三种情况的直线,通过观察确定函数在各点的导数.(A、B层学生做)

导数的几何意义教案

2、如何用导数研究函数的增减?

小结:附近:瞬时,增减:变化率,即研究函数在该点处的瞬时变化率,也就是导数。导数的正负即对应函数的增减。作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的增减性,体会导数是研究函数增减、变化快慢的有效工具。

同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性。都反应了导数是研究函数增减、变化快慢的有效工具。

例1函数导数的几何意义教案上有一点导数的几何意义教案,求该点处的导数导数的几何意义教案,并由此解释函数的增减情况。

导数的几何意义教案

函数在定义域上任意点处的瞬时变化率都是3,函数在定义域内单调递增。(此时任意点处的切线就是直线本身,斜率就是变化率)

3、利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程.

例2求曲线y=x2在点M(2,4)处的切线方程.

解:导数的几何意义教案

∴y'|x=2=2×2=4.

∴点M(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.

由上例可归纳出求切线方程的两个步骤:

(1)先求出函数y=f(x)在点x0处的导数f'(x0).

(2)根据直线方程的点斜式,得切线方程为y-y0=f'(x0)(x-x0).

提问:若在点(x0,f(x0))处切线PT的倾斜角为导数的几何意义教案导数的几何意义教案,求切线方程。(因为这时切线平行于y轴,而导数不存在,不能用上面方法求切线方程。根据切线定义可直接得切线方程导数的几何意义教案)

(先由C类学生来回答,再由A,B补充.)

例3已知曲线导数的几何意义教案上一点导数的几何意义教案,求:(1)过P点的切线的斜率;

(2)过P点的切线的方程。

解:(1)导数的几何意义教案,

导数的几何意义教案

y'|x=2=22=4.∴在点P处的切线的斜率等于4.

(2)在点P处的切线方程为导数的几何意义教案即12x-3y-16=0.

练习:求抛物线y=x2+2在点M(2,6)处的切线方程.

(答案:y'=2x,y'|x=2=4切线方程为4x-y-2=0).

B类学生做题,A类学生纠错。

三、小结

1.导数的几何意义.(C组学生回答)

2.利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程的步骤.

(B组学生回答)

四、布置作业

1.求抛物线导数的几何意义教案在点(1,1)处的切线方程。

2.求抛物线y=4x-x2在点A(4,0)和点B(2,4)处的切线的斜率,切线的方程.

3.求曲线y=2x-x3在点(-1,-1)处的切线的倾斜角

4.已知抛物线y=x2-4及直线y=x+2,求:(1)直线与抛物线交点的坐标; (2)抛物线在交点处的切线方程;

(C组学生完成1,2题;B组学生完成1,2,3题;A组学生完成2,3,4题)

教学反思:

本节内容是在学习了“变化率问题、导数的概念”等知识的基础上,研究导数的几何意义,由于新教材未设计极限,于是我尽量采用形象直观的方式,让学生通过动手作图,自我感受整个逼近的过程,让学生更加深刻地体会导数的几何意义及“以直代曲”的思想。

本节课主要围绕着“利用函数图象直观理解导数的几何意义”和“利用导数的几何意义解释实际问题”两个教学重心展开。先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的几何意义;然后,类比“平均变化率——瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义——“导数是曲线上某点处切线的斜率”。

完成本节课第一阶段的内容学习后,教师点明,利用导数的几何意义,在研究实际问题时,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”,从而达到“以简单的对象刻画复杂对象”的目的,并通过两个例题的研究,让学生从不同的角度完整地体验导数与切线斜率的关系,并感受导数应用的广泛性。本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。

高中数学教案(篇10)

各位评委、各位专家,大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。

下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

(二)教学内容

本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

二、教学目标分析

根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

三、重难点分析

一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

四、教法与学法分析

(一)学法指导

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

(二)教法分析

本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

五、课堂设计

本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

(一)创设情景,引出“三个一次”的关系

本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“”则变成一元二次不等式x2-x-60让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

为此,我设计了以下几个问题:

1、请同学们解以下方程和不等式:

①2x-7=0;②2x-70;③2x-70

学生回答,我板书。

2、我指出:2x-70和2x-70的解实际上只需利用不等式基本性质就容易得到。

3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。

4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:

①2x-7=0的解恰是函数y=2x-7的图象与x轴

交点的横坐标。

②2x-70的解集正是函数y=2x-7的图象

在x轴的上方的点的横坐标的集合。

③2x-70的解集正是函数y=2x-7的图象

在x轴的下方的点的横坐标的集合。

三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-60的解集。

(二)比旧悟新,引出“三个二次”的关系

为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。

看函数y=x2-x-6的图象并说出:

①方程x2-x-6=0的解是

x=-2或x=3 ;

②不等式x2-x-60的解集是

{x|x-2,或x3};

③不等式x2-x-60的解集是

{x|-23}。

此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。

学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a0),那么图象与x轴的位置关系又怎样呢?(学生回答:△0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c0与ax2+bx+c0的解集与函数y=ax2+bx+c的图象有怎样的关系?

(三)归纳提炼,得出“三个二次”的关系

1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。

2、此时提出:若a0时,怎样求解不等式ax2+bx+c0及ax2+bx+c0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)

(四)应用新知,熟练掌握一元二次不等式的解集

借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:

例1、解不等式2x2-3x-20

解:因为Δ0,方程2x2-3x-2=0的解是

x1= ,x2=2

所以,不等式的解集是

{ x| x ,或x2}

例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。

下面我们接着学习课本例2。

例2 解不等式-3x2+6x2

课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。

通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。

例3 解不等式4x2-4x+10

例4 解不等式-x2+2x-30

分别突出了“△=0”、“△0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。

4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。

(五)总结

解一元二次不等式的“四部曲”:

(1)把二次项的系数化为正数

(2)计算判别式Δ

(3)解对应的一元二次方程

(4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算Δ→三求根→四写解集

(六)作业布置

为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。

(1)必做题:习题1.5的1、3题

(2)探究题:①若a、b不同时为零,记ax2+bx+c=0的解集为P,ax2+bx+c0的解集为M,ax2+bx+c0的解集为N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求实数k的取值范围。

(七)板书设计

一元二次不等式解法(1)

五、教学效果评价

本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。

高中数学教案(篇11)

一、内容和内容解析

本节课是北师大版高中数学必修5中第三章第4节的内容。主要是二元均值不等式。它是在系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的优良素材,所以基本不等式应重点研究。

教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探究、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的`数学思想方法如数形结合、抽象归纳、演绎推理、分析法证明等在各种不等式的研究中均有着广泛的应用;另外,在解决函数最值问题中,基本不等式也起着重要的作用。

就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳,有助于培养学生创新思维和探索精神,是培养学生数形结合意识和提高数学能力的良好载体。

二、教学目标和目标解析

教学目标:了解基本不等式的几何背景,能在教师的引导下探究基本不等式的证明过程,理解基本不等式的几何解释,并能解决简单的最值问题;借助于信息技术强化数形结合的思想方法。

在教师的逐步引导下,能从较为熟悉的几何图形中抽象出基本不等式,实现对基本不等式几何背景的初步了解。

学生已经学习了不等式的基本性质,可以运用作差法给出基本不等式的证明,同时,介绍并渗透分析法证明的思想方法,从而完成基本不等式的代数证明。

进一步通过探究几何图形,给出基本不等式的几何解释,加强学生数形结合的意识。

通过应用问题的解决,明确解决应用题的一般过程。这是一个过程性目标。借助例1,引导学生尝试用基本不等式解决简单的最值问题,体会和与积的相互转化,进一步通过例2,引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,并用几何画板展示函数图形,进一步深化数形结合的思想。结合变式训练完善对基本不等式结构的理解,提升解决问题的能力,体会方法与策略。

三、教学问题诊断

在认知上,学生已经掌握了不等式的基本性质,并能够根据不等式的性质进行数、式的大小比较,也具备了一定的平面几何的基本知识。但是,倘若教师不加以引导,学生并不能自觉地通过已有的知识、记忆去发展和构建几何图形中的相等或不等关系,这就需要教师逐步地引导,并选用合理的手段去激活学生的思维,增强数形结合的思想意识。

另外,尽可能引领学生充分理解两个基本不等式等号成立的条件,为利用基本不等式解决简单的最值问题做好铺垫。在用基本不等式解决最值时,学生往往容易忽视基本不等式,使用的前提条件a,b>0同时又要注意区别基本不等式的使用条件为,因此,在教学过程中,借助例题落实学生领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用。而对于“一正二定三相等”的进一步强化和应用,将放于下一个课时的内容。

四、教学支持条件分析

为了能很好地展示几何图形,体会基本不等式的几何背景,教学中需要有具体的图形来帮助学生理解基本不等式的生成,感受数形结合的数学思想,所以,借助于几何画板软件来加强几何直观十分必要,同时演示动画帮助学生验证基本不等式等号取到的情况,并用电脑3D技术展示基本不等式的又一几何背景,加深对基本不等式的理解,增强教学效果。

五、教学设计流程图

教学过程的设计从实际的问题情境出发,以基本不等式的几何背景为着手点,以探究活动为主线,探求基本不等式的结构形式,并进一步给出几何解释,深化对基本不等式的理解。通过典型例题的讲解,明确利用基本不等式解决简单最值问题的应用价值。数形结合的思想贯穿于整个教学过程,并时刻体现在教学活动之中。

六、教法和预期效果分析

本节课通过6个教学环节,强调过程教学,在教师的引导下,启动观察、分析、感知、归纳、探究等思维活动,从各个层面认识基本不等式,并理解其几何背景。课堂教学以学生为主体,基本不等式为主线,在学生原有的认知基本上,充分展示基本不等式这一知识的发生、发展及再创造的过程。

同时,以多媒体课件作为教学辅助手段,赋予学生直观感受,便于观察,从而把一个生疏的、内在的知识,变成一个可认知的、可交流的对象,提高了课堂效率。

通过这节课的学习,引领学生多角度、多方位地认识基本不等式,并了解它的几何意义充分渗透数形结合的思想;能在教师的引导下,主动探索并了解基本不等式的证明过程,强化证明的各类方法;

会用基本不等式解决简单的(小)值问题并注意等号取到的条件。在教学过程中始终围绕教学目标进行评价,师生互动,在教学过程的不同环节中及时获取教学反馈信息,以学生为主体,及时调节教学措施,完成教学目标,从而达到较为理想的教学效果。

高中数学教案(篇12)

理解任意角的概念(包括正角、负角、零角) 与区间角的概念.

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.

1. 提高学生的推理能力;

终边相同角的集合的表示;区间角的集合的书写.

①角的第一种定义是有公共端点的两条射线组成的图形叫做角.

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

④注意:

⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

⑵零角的终边与始边重合,如果α是零角α =0°;

⑶角的概念经过推广后,已包括正角、负角和零角.

2.象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.

例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.

⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

终边相同的角的表示:

所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α +

k·360° ,

k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k∈Z

⑵ α是任一角;

⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差

360°的整数倍;

⑷ 角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.

例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.

⑴-120°;

⑵640°;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.

例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.

④终边相同的角的表示法.

②教材P5练习第1-5题;

③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,

? k·360°+180°<α<k·360°+270°(k∈Z)

因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)

故2α是第一、二象限或终边在y轴的非负半轴上的角. 又k·180°+90°<

各是第几象限角?

<k·180°+135°(k∈Z) .

<n·360°+135°(n∈Z) ,

当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,

<n·360°+315°(n∈Z) ,

当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<此时,

理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.

能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题

通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点

一、复习角度制:

初中所学的角度制是怎样规定角的度量的? 规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.

由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?

我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.

3.思考:

(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?

③正角的弧度数是一个正数.

④负角的弧度数是一个负数.

⑤零角的弧度数是零.

⑥角α的弧度数的绝对值|α|= .

① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.

② 弧度与角度不能混用.

弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.

例1.把67°30’化成弧度.

例2.把? rad化成度.

(2)tan1.5.

②教材P9练习第1、2、3、6题;

③教材P10面7、8题及B2、3题.

高中数学教案(篇13)

教学目标:

(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。

(2)进一步理解曲线的方程和方程的曲线。

(3)初步掌握求曲线方程的方法。

(4)通过本节内容的教学,培养学生分析问题和转化的能力。

教学重点、难点:

求曲线的方程。

教学用具:

计算机。

教学方法:

启发引导法,讨论法。

教学过程:

【引入】

1、提问:什么是曲线的方程和方程的曲线。

学生思考并回答。教师强调。

2、坐标法和解析几何的意义、基本问题。

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。解析几何的两大基本问题就是:

(1)根据已知条件,求出表示平面曲线的方程。

(2)通过方程,研究平面曲线的性质。

事实上,在前边所学的直线方程的理论中也有这样两个基本问题。而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。本节课就初步研究曲线方程的求法。

【问题】

如何根据已知条件,求出曲线的方程。

【实例分析】

例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。

首先由学生分析:根据直线方程的知识,运用点斜式即可解决。

解法一:易求线段的中点坐标为(1,3),

由斜率关系可求得l的斜率为

于是有

即l的方程为

分析、引导:上述问题是我们早就学过的,用点斜式就可解决。可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条)。

证明:(1)曲线上的点的坐标都是这个方程的解。

设是线段的垂直平分线上任意一点,则

将上式两边平方,整理得

这说明点的坐标是方程的解。

(2)以这个方程的解为坐标的点都是曲线上的点。

设点的坐标是方程①的任意一解,则

到、的距离分别为

所以,即点在直线上。

综合(1)、(2),①是所求直线的方程。

至此,证明完毕。回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

由两点间的距离公式,点所适合的条件可表示为

将上式两边平方,整理得

果然成功,当然也不要忘了证明,即验证两条是否都满足。显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证。

这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想。因此是个好方法。

让我们用这个方法试解如下问题:

例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程。

分析:这是一个纯粹的几何问题,连坐标系都没有。所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系。然后仿照例1中的解法进行求解。

求解过程略。

【概括总结】通过学生讨论,师生共同总结:

分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正。说得更准确一点就是:

(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

(2)写出适合条件的点的集合

(3)用坐标表示条件,列出方程;

(4)化方程为最简形式;

(5)证明以化简后的方程的解为坐标的点都是曲线上的点。

一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点。所以,通常情况下证明可省略,不过特殊情况要说明。

上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。

下面再看一个问题:

例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程。

【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系。

解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

由距离公式,点适合的条件可表示为

将①式移项后再两边平方,得

化简得

由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示。

【练习巩固】

题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程。

分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示。设、的坐标为、,则的坐标为,的坐标为。

根据条件,代入坐标可得

化简得

由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

【小结】师生共同总结:

(1)解析几何研究研究问题的方法是什么?

(2)如何求曲线的方程?

(3)请对求解曲线方程的五个步骤进行评价。各步骤的作用,哪步重要,哪步应注意什么?

【作业】课本第72页练习1,2,3;

高中数学教案(篇14)

教学目标:1.进一步理解线性规划的概念;会解简单的线性规划问题;

2.在运用建模和数形结合等数学思想方法分析、解决问题的过程中;提高解决问题的能力;

3.进一步提高学生的合作意识和探究意识。

教学重点:线性规划的概念及其解法

教学难点:

代数问题几何化的过程

教学方法:启发探究式

教学手段:运用多媒体技术

教学过程:1.实际问题引入。

问题一:小王和小李合租了一辆小轿车外出旅游.小王驾车平均速度为每小时70公里,平均耗油量为每小时6公升;小李驾车平均速度为每小时50公里,平均耗油量为每小时4公升.现知道油箱内油量为60公升,两人驾车时间累计不能超过12小时.问小王和小李分别驾车多少时间时,行驶路程最远?

2.探究和讨论下列问题。

(1)实际问题转化为一个怎样的数学问题?

(2)满足不等式组①的条件的点构成的区域如何表示?

(3)关于x、y的一个表达式z=70x+50y的几何意义是什么?

(4)z的几何意义是什么?

(5)z的最大值如何确定?

让学生达成以下共识:小王驾车时间x和小李驾车时间y受到时间(12小时)和油量(60公升)的限制,即

x+y≤12

6x+4y≤60 ①

x≥0

y≥0

行驶路程可以表示成关于x、y的一个表达式:z=70x+50y 由数形结合可知:经过点B(6,6)的直线所对应的z最大.

则zmax=6×70+6×50=720

结论:小王和小李分别驾车6小时时,行驶路程最远为720公里.

解题反思:

问题解决过程中体现了那些重要的数学思想?

3.线性规划的有关概念。

什么是“线性规划问题”?涉及约束条件、线性约束条件、目标函数、线性目标函数、可行解、可行域和最优解等概念.

4.进一步探究线性规划问题的解。

问题二:若小王和小李驾车平均速度为每小时60公里和40公里,其它条件不变,问小王和小李分别驾车多少时间时,行驶路程最远?

要求:请你写出约束条件、目标函数,作出可行域,求出最优解。

问题三:如果把不等式组①中的两个“≤”改为“≥”,是否存在最优解?

5.小结。

(1)数学知识;(2)数学思想。

6.作业。

(1)阅读教材:P.60-63;

(2)课后练习:教材P.65-2,3;

(3)在自己生活中寻找一个简单的线性规划问题,写出约束条件,确定目标函数,作出可行域,并求出最优解。

《一个数列的研究》教学设计

教学目标:

1.进一步理解和掌握数列的有关概念和性质;

2.在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力;

3.进一步提高问题探究意识、知识应用意识和同伴合作意识。

教学重点:

问题的提出与解决

教学难点:

如何进行问题的探究

教学方法:

启发探究式

教学过程:

问题:已知{an}是首项为1,公比为 的无穷等比数列。对于数列{an},提出你的问题,并进行研究,你能得到一些什么样的结论?

研究方向提示:

1.数列{an}是一个等比数列,可以从等比数列角度来进行研究;

2.研究所给数列的项之间的关系;

3.研究所给数列的子数列;

4.研究所给数列能构造的新数列;

5.数列是一种特殊的函数,可以从函数性质角度来进行研究;

6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。

针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。

课堂小结:

1.研究一个数列可以从哪些方面提出问题并进行研究?

2.你最喜欢哪位同学的研究?为什么?

课后思考题: 1.将{an}推广为一般的无穷等比数列:1,q,q2,…,qn-1,… ,上述一些研究结论会有什么变化?

2.若将{an}改为等差数列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以进行类比研究?

开展研究性学习,培养问题解决能力

一、对“研究性学习”和“问题解决”的认识 研究性学习是一种与接受性学习相对应的学习方式,泛指学生主动探究问题的学习。研究性学习也可以说是一种学习活动:学生在教师指导下,在自己的学习生活和社会生活中选择课题,以类似科学研究的方式去主动地获取知识、应用知识、解决问题。

“问题解决”(problem solving)是美国数学教育界在二十世纪八十年代的主要口号,即认为应当以“问题解决”作为学校数学教育的中心。

问题解决能力是一种重要的数学能力,其核心是“创新精神”与“实践能力”。在数学教学活动中开展研究性学习是培养问题解决能力的主要途径。

二、“问题解决”课堂教学模式的建构与实践 以研究性学习活动为载体,以培养问题解决能力为核心的课堂教学模式(以下简称为“问题解决”课堂教学模式)试图通过问题情境创设,激发学生的求知欲,以独立思考和交流讨论的形式,发现、分析并解决问题,培养处理信息、获取新知、应用知识的能力,提高合作意识、探究意识和创新意识。

(一)关于“问题解决”课堂教学模式

通过实施“问题解决”课堂教学模式,希望能够达到以下的功能目标:学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。

(二)数学学科中的问题解决能力的培养目标

数学问题解决能力培养的目标可以有不同层次的要求:会审题,会建模,会转化,会归类,会反思,会编题。

(三)“问题解决”课堂教学模式的教学流程

(四)“问题解决”课堂教学评价标准

1. 教学目标的确定;

2. 教学方法的选择;

3. 问题的选择;

4. 师生主体意识的体现;

5.教学策略的运用。

(五)了解学生的数学问题解决能力的途径

(六)开展研究性学习活动对教师的能力要求

数学详案教案推荐


工作总结之家的编辑为您整理了一些有关《数学详案教案》的信息,希望本文对您有所帮助。每个老师上课需要准备的东西是教案课件,每个老师都需要细心筹备教案课件。 优秀的教案课件能够让学生更好地掌握知识点和技能。

数学详案教案【篇1】

活动设计背景

《数小鸡》是一首有趣的儿歌。为了使幼儿感兴趣,我制作了课件,以丰富幼儿的视觉感受,最后以游戏方式结束来进一步了解鸡妈妈和鸡宝宝的生活。

活动目标

1、培养幼儿学儿歌的兴趣,热爱小动物。

2、学习儿歌尝试为儿歌创编动作,学习词语依偎。

3、发展幼儿语言能力和点数能力。

4、培养幼儿比较和判断的能力。

5、引发幼儿学习的兴趣。

教学重点、难点

数字1-7的点数、学会儿歌,并为其创编动作。

活动准备

物质准备:鸡妈妈头饰一个、鸡宝宝头饰同幼儿数、多媒体课件、录音机、音乐磁带、游戏器材。

活动过程

开始环节:

一、律动

基本环节:

二、观看多媒体课件

1、小朋友做的真棒!今天我们班来了许多小客人,你们看都有谁?出示多媒体课件图一:图片上都有谁?(鸡妈妈和鸡宝宝)鸡妈妈在做什么?(在数小鸡)鸡妈妈有几只鸡宝宝?我和鸡妈妈一起来数一数吧!一二三四五六七,(教师引导宝宝一起点数)

2、观看图二:这里有几只鸡宝宝?鸡宝宝在做什么?点数(一只小鸡在吃米)我们一起用动作学一学好吗?

3、观看图三:咦?发生什么事情了?(两只小鸡在抢东西)有几只?在干什么?请个别幼儿示范后,(两个幼儿就示范一次)教育幼儿要团结友爱互帮互助。

4、观看图四:还有几只鸡宝宝在做什么?数一数有几只?(四只小鸡叽叽叽)

5、观看图五:小朋友,现在看图片上的鸡宝宝们在做什么呢?.本文来源:幼儿园教案网(依在妈妈怀抱里)重点讲解依偎。谁愿意来做给大家看看什么是依偎,请幼儿模仿动作并学习说依偎。教师解释依偎的意思。

鸡宝宝多爱自己的妈妈呀,我们也要像鸡宝宝一样爱自己的妈妈。

播放动画,教师念一遍儿歌:

6、小朋友,儿歌好听吗?我们为儿歌取一个好听的名字好吗?鼓励幼儿自由发挥,引出《数小鸡》。

三、学习儿歌,并根据儿歌的内容做相应的动作。

结束环节:

四、请幼儿上前表演。

延伸环节:

五、以游戏的形式来巩固对儿歌的学习。

游戏开始,母鸡咯咯叫,并对小鸡说:鸡宝宝们,天亮了,妈妈要带你们去草地上去捉小虫,前面有好多小虫子啊,快快来啊!

数学详案教案【篇2】

设计意图

在幼儿的生活中时时能捕捉到数学的影子,幼儿对数学的感知也是建立在生活经验的基础上。为此开展了《小猫钓鱼》活动。在生活中寻找数学教育的素材,有利于幼儿构建连续、完整的数学知识体系。幼儿的学习是一个日积月累的过程,在贴近幼儿生活的数学教育中,幼儿已有的知识经验能帮助他们对新知识进行同化和顺应,为幼儿学习数学提供广泛的基础;在生活中寻找数学教育的素材,有利于幼儿产生对数学的学习兴趣。

游戏目标:

1、训练幼儿点数的能力以及知道在1的基础上添上1是2,再添上1是3,再添上1是4。

2、训练幼儿的观察力、注意力以及准确的判断力。

3、发展幼儿逻辑思维能力。

4、引导幼儿积极与材料互动,体验数学活动的乐趣。

5、培养幼儿的观察力、判断力及动手操作能力。

游戏内容:

1、家长先要准备好小猫钓鱼的玩具一套。

2、家长告诉幼儿。你今天扮演小猫,看看你能钓多少条鱼

游戏指导:

1、幼儿钓鱼时,家长要鼓励幼儿不慌不忙的钓鱼,锻炼耐心。对于钓不到鱼的幼儿,家长可以手把手的帮助。

2、幼儿在达到游戏目标时,若有兴趣,把鱼放在里面重新进行。

活动反思

活动中幼儿思维还是很活跃的,参与积极性比较高。针对中班幼儿的认知特点和他们天真浪漫,爱说爱动,及对自己的行为约束力差,注意力容易分散的特性。活动关键在于采取多种形式培养幼儿的学习兴趣,激发孩子主动学习的积极性。如果老师能够让孩子们一上学就感受到学习的乐趣,从小培养起他们的强烈的求知欲、良好的思维品质和学习习惯,对孩子们来说,将受益匪浅。

数学活动不仅要考虑数学自身的特点,更应遵循幼儿学习数学的心理规律,强调从幼儿已有的生活经验出发数学教学活动必须建立在幼儿的已知发展水平和已有的知识经验的基础之上。数学活动中教师要能及时肯定他们在生活中善于观察的好习惯,培养幼儿有一双用数学视角观察世界的眼睛。

数学详案教案【篇3】

设计思路:

根据小班幼儿学习数的特点,我发现孩子学数比较形象、直观。因此,设计了这一有趣的游戏思维教学活动。让幼儿通过教师所提供的特定材料来感知1和许多,使幼儿在愉悦的气氛中感知数概念。并通过游戏找蛋、还蛋来感受帮助别人的快乐。

活动目标:

1、以游戏形式帮助幼儿感知1和许多。

2、愿意参加游戏,感受帮助别人的快乐。

3、发展目测力、判断力。

4、引导幼儿积极与材料互动,体验数学活动的乐趣。

5、培养幼儿的尝试精神,发展幼儿思维的敏捷性、逻辑性。

活动准备:

1、老师扮演鸡妈妈,幼儿扮演小鸡。

2、活动场地布置许多树、草(草内有若干鸡蛋和一只鸭蛋)。

3、一幅《母鸡生蛋》图,鸭木偶一个。

活动过程:

一、找蛋

1、老师和幼儿一起学习儿歌《母鸡生蛋》。

问:鸡宝宝你们听见了什么

2、师:哎呀,我生了许多许多的蛋不知道掉到哪里去了,请你们帮我找一找。

3、幼儿找蛋。

二、还蛋

1、引导每个幼儿找回1只鸡蛋,找到的鸡蛋放进箩筐。

2、师:你们找回了多少鸡蛋

3、问个别小鸡:你找回了几只鸡蛋

4、鸡妈妈有许多孩子,1只小鸡找回1只鸡蛋,1只1只合起来是多少

5、继续引导幼儿发现其中有一只不同的蛋。

师:这只蛋和你们手里的蛋有什么不同

6、鸭妈妈找不到自己的蛋会怎样

7、请鸡宝宝把鸭蛋还给鸭妈妈。[本.文来源:屈老.师教案网]看看鸭窝里有没有鸡妈妈生的蛋

三、玩蛋

1、玩蛋宝宝。(幼儿每人拿一只蛋,随意的在地上摆弄滚动)

2、师:请鸡宝宝把蛋放回篮子里,你给我一个,你也给我一个-----。现在我的篮子里有多少蛋

四、画蛋

1、师:咯咯嗒,咯咯嗒,谁在生蛋呀

2、师:咯咯嗒,咯咯嗒,它又要生蛋了,我们一起把它生的蛋画下来。

3、教师和幼儿一起把画贴在墙上,请小朋友以后再来给鸡妈妈画蛋。

数学详案教案【篇4】

活动设计背景:

活动目标:

1、通过对比,让幼儿感知圆形、叁角形、正方形的基本特征,能够区分叁种几何图形。

2、通过创设愉悦的游戏情节,运用多种感观来调动幼儿的思维、想象能力,发展幼儿的观察力。

3、激发幼儿探索的欲望。

教学重点、难点

活动重点、难点:圆形和方形的认识和区分。

活动准备

1、叁种几何图形若干。

2、魔法衣、魔法棒。

3、课件《图形变变变》

活动过程

一、开始部分:教师带幼儿做《开火车》舞蹈进场。

(孩子入座)师:小朋友们,魔术王国到了,前几天魔术王国的国王给了我一个宝贝,看我身上穿的这件就是魔法衣。魔法衣有个神奇的口袋里面有很多神奇的东西,你们想不想知道里面有什么?

(1)、教师念儿歌:魔法口袋东西多,让我先来摸一摸,摸出来看看是什么?摸出正方形,问:这是什么?(正方形的卡片)小朋友们真棒!(教案出自:课件网)正方形有四条边它们一样长问:我们在平时生活中,我们见过哪些东西是长方形的?(启发幼儿说出)小朋友真棒!那小朋友们一起来看看罗老师找出的图片。

(2)、再念魔法:罗老师要变魔法啦!来看看罗老师变出了什么,魔法变变变,变出了长方形(正方形对折)长方形的两条边都是一样长(摸一摸)一边长,一边短,那小朋友想一想,我们见过什么东西是长方形的?(启发幼儿说出)那我们一起来看看罗老师找出的图片。

(3)再念魔法:罗老师又要变魔法啦!来看看罗老师这次又变出了什么,魔法变变变,变出了叁角形(正方形对折)叁条边,叁个角,像座小山立得牢,小朋友想一想,我们见过什么东西是叁角形的?(启发幼儿说出)那我们一起来看看罗老师找出的图片。

师:小朋友们真棒,认识了这么多图形宝宝,魔术王国里还有好多有趣的东西,你们看,这是魔法棒,(出示魔法棒)它也会变出好多的东西。(教案出自:课件网)我们来看看它变出什么了?魔法变变变(边说边出示其中的一幅图画)机器人。现在小朋友们来找一找这个机器人它由哪些图形宝宝组成的?(表扬)。

魔法魔法变变变,哇,魔法棒真厉害一下子变出叁幅图,教师用魔法棒变出另外的几幅图画,现在我想请小朋友来找一找。

二、游戏:小动物找家师:魔法棒的本领可真大,它还会边出小动物呢!小朋友们,你们看都是谁啊?魔法变!变!变!(变出叁种小动物)师:咦!这叁个小动物好像不高兴,我们来问问他们怎么了。

小狗、小猪、小兔子,你们怎么啦?

(小动物说话:)我们找不到家了!

小朋友们,我们来帮小动物找家吧!你们愿不愿意啊?

幼:愿意。

师:你们看,这些都是小动物的房子,现在我们来帮小动物找找家。(把叁种几何图形的卡片发给幼儿)师:小动物说它们的房子都是有形状的,我们来听一听,小猪说:我们的房子是正方形的,小朋友们看到正方形的房子了吗?让幼儿把正方形的卡片举起来。

师:小朋友们做得真好,都帮小猪找到家了。小狗说:它们的房子是叁角形的,小朋友们看到叁角形的房子了吗?让幼儿把叁角形的卡片举起来。

师:小狗也找到家了,小兔子说:它们的房子是圆形的,小朋友们看看圆形的房子在哪里?让幼儿把圆形的卡片举起来。

师:小朋友们真能干,也帮小兔子找到家了。师:小朋友们真聪明,都帮小动物们找到家了,小狗、小兔子、小猪可高兴了。(把叁种小动物分别送到相应的房子里)(叁)、结束部分:让幼儿巩固对叁种几何图形的认识。

师:小朋友们,今天我们在魔术王国认识了好多的图形宝宝,小朋友们说说它们是谁啊?(依次出示叁种几何图形的卡片,让幼儿说出图形的名称)。

师:魔术王国里还有好多好多奇妙的东西,下次老师再带你们去,好不好?我们也唱着歌回家吧!开着火车回家去

数学详案教案【篇5】

教学目标:

1、通过十个十个数,认识百的组成,初步感知十进制计数方法。

2、通过百数图,掌握百以内整十数的加减法。

3、让学生运用自己的经验和方法认识与掌握百的分拆,培养学生积极探索、主动发现的学习态度和习惯。

教学重难点:

认识百的组成,掌握百以内整十数的加减法计算。

教学准备:

多媒体教学软件,百数图。

教学过程:

一、引入

1、媒体演示装面包,让学生仔细观察一下叔叔阿姨是如何装面包的。

2、出示10袋面包,问学生:一共有几个面包?你是怎么数的?

3、引导学生概括:10个十是1个百。

板书:10个十是1个百。

4、追问:谁知道100里面有几个十?

5、讨论:如何把100这个数放到数位表中呢?

二、展开

出示百数图:你知道这里一共有多少个小圆点吗?

让学生观察百数图,讨论自己的数法,并交流。

完成右边的练习,并一起朗读。

三、深入

1、在百数图上我们还可以做加减法呢。

2、用教学软件“百数图”依次演示。

3、小组讨论:可以用什么方法做这些题目?

(学生可能会说1个十加1个十等于2个十,2个十是20。或者因为1+1=2,所以10+10=20)

4、在小组内交流:50+10=?50+20=?50+30=?50+40=?

5、出示:40-10=?50-20=?70-40=?30-20=?90-50=?

让学生自己讨论出解决这些题目的方法,然后全班进行交流。

6、小结:这些数都是整十数,我们通过自己动脑筋学会了整十数的加减法的计算方法,做题目的时候你可以选择自己喜欢的方法来做。

7、运用所学知识完成第4题,比一比谁计算的正确率。

做完后,和你的小伙伴互相检查,并说说计算时你是怎么想的?

8、完成第5题前面3栏,要求在计算正确的基础上,比一比谁的速度最快。每一小组全对并且最快的小朋友可以做小老师检查自己小组其他小朋友的完成情况。

9、第5题的后面2栏,先引导学生仔细观察题目中各部分的变化,然后自己再试试看怎么继续编下去。

四、总结

这节课同学们积极思考,并与小伙伴们进行讨论,学到了很多知识,你都有哪些收获?说给大家听听。

高一数学函数教案12篇


资料可以指人事物的相关多类信息、情报。在我们的工作中,我们经常会需要一些资料。参考资料会让未来的学习或者工作做得更好!你是不是在寻找一些可以用到的资料呢?经过小编精心整理,推出高一数学函数教案12篇,仅供参考,大家一起来看看吧。

高一数学函数教案(篇1)

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

AB长x(m)123456789

BC长(m)12

面积y(m2)48

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后意见。形成共识,x的值不可以任意取,有限定范围,其范围是0

高一数学函数教案(篇2)

高一数学指数函数教案:教学目标

1.使学生掌握指数函数的概念,图象和性质.

(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.

(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.

(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如

的图象.

2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.

高一数学指数函数教案:教学建议

高一数学指数函数教案:教材分析

(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.

(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数

时,函数值变化情况的区分.

(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

高一数学指数函数教案:教法建议

(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是

的样子,不能有一点差异,诸如

,

等都不是指数函数.

(2)对底数

的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

高一数学函数教案(篇3)

一、教材分析

本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1 函数的概念》共3课时,本节课是第1课时。

托马斯说:“函数概念是近代数学思想之花”。 生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。

函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。函数的的重要性正如恩格斯所说:“数学中的转折点是笛卡尔的变数,有了变数,运动就进入了数学;有了变数,辩证法就进入了数学”。

二、学生学习情况分析

函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;(三)高中用导数工具研究函数的单调性和最值。

1.有利条件

现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

初中用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

2.不利条件

用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

三、教学目标分析

课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

1.知识与能力目标:

⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

⑵理解函数的三要素的含义及其相互关系;

⑶会求简单函数的定义域和值域

2.过程与方法目标:

⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.

3.情感、态度与价值观目标:

感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

四、教学重点、难点分析

1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。 但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

2.教学难点:第一:从实际问题中提炼出抽象的概念;第二:符号“y=f(x)”的含义的理解.

难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

五、教法与学法分析

1.教法分析

本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

2.学法分析

在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

高一数学函数教案(篇4)

1.2解三角形应用举例第二课时

一、教学目标

1、能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题

2、巩固深化解三角形实际问题的一般方法,养成良好的研究、探索习惯。

3、进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力

二、教学重点、难点

重点:结合实际测量工具,解决生活中的测量高度问题

难点:能观察较复杂的图形,从中找到解决问题的关键条件

三、教学过程

Ⅰ.课题导入

提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题

Ⅱ.讲授新课

[范例讲解]

例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。

分析:求AB长的关键是先求AE,在ACE中,如能求出C点到建筑物顶部A的距离CA,再测出由C点观察A的仰角,就可以计算出AE的长。

解:选择一条水平基线HG,使H、G、B三点在同一条直线上。由在H、G两点用测角仪器测得A的仰角分别是、,CD=a,测角仪器的高是h,那么,在ACD中,根据正弦定理可得

AC=AB=AE+h=AC+h=+h

例2、如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50。已知铁塔BC部分的高为27.3m,求出山高CD(精确到1m)

师:根据已知条件,大家能设计出解题方案吗?

若在ABD中求CD,则关键需要求出哪条边呢?

生:需求出BD边。

师:那如何求BD边呢?

生:可首先求出AB边,再根据BAD=求得。

解:在ABC中,BCA=90+,ABC=90-,

BAC=-,BAD=.根据正弦定理,=

所以AB==在RtABD中,得BD=ABsinBAD=

将测量数据代入上式,得BD==≈177(m)

CD=BD-BC≈177-27.3=150(m)

答:山的高度约为150米.

思考:有没有别的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?

例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.

思考1:欲求出CD,大家思考在哪个三角形中研究比较适合呢?(在BCD中)

思考2:在BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?(BC边)

解:在ABC中,A=15,C=25-15=10,根据正弦定理,

=,BC=≈7.4524(km)CD=BCtanDBC≈BCtan8≈1047(m)

答:山的高度约为1047米

Ⅲ.课堂练习:课本第17页练习第1、2、3题

Ⅳ.课时小结

利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。

Ⅴ.课后作业

作业:《习案》作业五

高一数学教案:《函数》教学设计

高一数学教案:《函数》教学设计

教学目标

1.理解函数的概念,了解函数的三种表示法,会求函数的定义域.

(1)了解函数是特殊的映射,是非空数集A到非空数集B的映射.能理解函数是由定义域,值域,对应法则三要素构成的整体.

(2)能正确认识和使用函数的三种表示法:解析法,列表法,和图象法.了解每种方法的优点.

(3)能正确使用“区间”及相关符号,能正确求解各类函数的定义域.

2.通过函数概念的学习,使学生在符号表示,运算等方面的能力有所提高.

学过什么函数?

(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)

学生举出如等,待学生说完定义后教师打出投影片,给出定义之后教师也举一个例子,问学生.

提问1.是函数吗?

(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是可以可做.)

教师由此指出我们争论的焦点,其实就是函数定义的不完善的地方,这也正是我们今天研究函数定义的必要性,新的定义将在与原定义不相违背的基础上从更高的观点,将它完善与深化.

二、新课

现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)

提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.

学生的回答往往是把书上的定义念一遍,教师可以板书的形式写出定义,但还要引导形式发现定义的本质.

(板书)2.2函数

一、函数的概念

高一数学函数教案(篇5)

1.2解三角形应用举例第四课时

一、教学目标

1、能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题,掌握三角形的面积公式的简单推导和应用

2、本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。

3、让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验

二、教学重点、难点

重点:推导三角形的面积公式并解决简单的相关题目

难点:利用正弦定理、余弦定理来求证简单的证明题

三、教学过程

Ⅰ.课题导入

[创设情境]

师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在

ABC中,边BC、CA、AB上的高分别记为h、h、h,那么它们如何用已知边和角表示?

生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA

师:根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如h=bsinC代入,可以推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?

生:同理可得,S=bcsinA,S=acsinB

Ⅱ.讲授新课

[范例讲解]

例1、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm)

(1)已知a=14cm,c=24cm,B=150;

(2)已知B=60,C=45,b=4cm;

(3)已知三边的长分别为a=3cm,b=4cm,c=6cm

分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。

解:略

例2、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm)?

思考:你能把这一实际问题化归为一道数学题目吗?

本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。

解:设a=68m,b=88m,c=127m,根据余弦定理的推论,

cosB==≈0.7532

sinB=0.6578应用S=acsinB

S≈681270.6578≈2840.38(m)

答:这个区域的面积是2840.38m。

变式练习1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面积S

提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。

答案:a=6,S=9;a=12,S=18

例3、在ABC中,求证:

(1)

(2)++=2(bccosA+cacosB+abcosC)

分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,用正弦定理来证明

证明:(1)根据正弦定理,可设

===k显然k0,所以

左边===右边

(2)根据余弦定理的推论,

右边=2(bc+ca+ab)

=(b+c-a)+(c+a-b)+(a+b-c)=a+b+c=左边

变式练习2:判断满足sinC=条件的三角形形状

提示:利用正弦定理或余弦定理,“化边为角”或“化角为边”(解略)直角三角形

Ⅲ.课堂练习课本第18页练习第1、2、3题

Ⅳ.课时小结

利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状。特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用。

Ⅴ.课后作业

《习案》作业七

高一数学函数教案(篇6)

同一只封建宗法制度的黑手,伸出了两条绳索,捆住了妇女的脖子,朝着相反的方向紧勒,要把劳动妇女置于死地而后快。祥林嫂当时就处在这种极端悲惨的境地中:

族权迫使她寡而再嫁,夫权又视此为奇耻大辱,使她忍辱含冤,永远生活在耻辱之中。祥林嫂以后的悲剧,都是由此而引起的。

那么,祥林嫂是如何对待新迫害的呢?

3.高潮:

①祥林嫂为什么又一次来到鲁四老爷家?

②有人认为,丧夫失子有偶然性,这种看法对不对?

丧夫失子似乎有偶然性,然而隐藏在偶然性背后的,是那起决定作用的必然性。祥林嫂的丈夫死于旧社会中蔓延着的传染病伤寒,阿毛死于祥林嫂的贫困、劳碌。(若不是忙着打柴摘茶养蚕,能让年仅两三岁的孩子去剥豆吗?)因此,实质上,是罪恶的政权夺走了祥林嫂的丈夫和儿子的生命,使她陷于嫁而再寡的境地。作者开始把批判的笔触由封建夫权、族权扩展到封建政权。

按照封建宗法观念,妇女出嫁从夫,夫死从子,一旦丧夫失子,则连在家庭中生存的权利都被剥夺了。因此,大伯来收屋使祥林嫂走投无路,只好再一次来到鲁家。她到鲁家后,又遭受了更大的打击。

③在鲁四老爷,人们对待祥林嫂这个嫁而再寡的不幸女人态度如何?

A.鲁四老爷的态度:

鲁四老爷站在顽固维护封建宗法制度的立场上,从精神上残酷地虐杀她。他暗暗地告诫四婶的那段话,就是置祥林嫂于死地而又不露一丝血痕的软刀子。(通过四婶先后喊出三句你放着罢,杀人不见血地葬送了祥林嫂的性命。)

B.人们的态度:

人们叫她的声调和先前很不同。

鲁迅用他那犀利的笔锋,从广阔的领域里揭示了封建社会黑暗的程度。

人们对祥林嫂的态度,使她感到痛苦与迷惑。她不时地向人们诉说着自己不幸的遭遇,她的精神却惨遭蹂躏。而柳妈的说鬼又给祥林嫂新的打击。

C.柳妈说鬼:

④祥林嫂是如何对待这如此沉重的打击的?其结果如何?

为了争得做人的权利,为了求得一线生存的希望,她在竭尽全力地反抗着:

她背着沉重的精神包袱,整日劳碌着,以便积够十二元鹰洋,用捐门槛的方法去摆脱人们在阳世、阴世间给她设下的罪名,她忍受着咬啮人心的嘲笑和侮辱,在无边的寂寞和悲哀中,默默干了一年,这是何等坚韧的反抗精神啊!

而反抗的结果,出乎柳妈、祥林嫂的预想,这血淋淋的事实深刻地说明了:祥林嫂是无法赎罪的,祥林嫂陷入了求生不得,欲死不能的境地。

4.结局:

当祥林嫂被折磨得像木偶人,丧失了当牛做马的条件后,鲁四老爷就一脚把她踢出门外,使她终于成了只有那眼珠间或一轮,还可以表示她是一个活物的僵尸。即使这样,她在临死前,还向我提出了三个问题:

A.一个人死了之后,究竟有没有魂灵的?

B.那么,也就有地狱了?

C.那么,死掉的一家的人,都能见面的?

这是对魂灵的有无表示疑惑。

她希望人死后有灵魂,因为她想看见自己的儿子;她害怕人死后有灵魂,因为她害怕在阴间被锯成两半。这种疑惑是她对自己命运的疑惑,但也正是这种疑惑,这种无法解脱的矛盾,使她在临死前受到了极大的精神折磨,最后,悲惨地死去。

从祥林嫂一生的悲惨遭遇中,可以清楚地看到,封建的宗法制度正是用政权、族权、神权、夫权这四条绳索把祥林嫂活活地勒死的。

祥林嫂一生的悲惨遭遇,正是旧中国千百万劳动妇女悲惨遭遇的真实写照。作者正是通过塑造祥林嫂这一典型人物,对吃人的封建制度和封建礼教进行深刻的揭露和有力地抨击的。

小结:

祥林嫂是生活在旧中国的一个被践踏、被愚弄、被迫害、被鄙视的勤劳、善良、质朴、顽强的劳动妇女的典型形象。

总之,祥林嫂的悲剧是一个社会悲剧,造成这一悲剧的根源是封建礼教对中国劳动妇女的摧残和封建思想对当时中国社会的根深蒂固的统治。

第三课时

本课时重点分析鲁四老爷、我和柳妈的形象。

一、检查作业:

二、分析鲁四老爷:

鲁四老爷是当时农村中地主阶级的代表人物,是资产阶级民主革命时期地主阶级知识分子的典型形象。他政治上迂腐、保守,顽固地维护旧有的封建制度,反对一切改革与革命。他思想上反动,尊崇理学和孔孟之道。自觉维护封建制度和封建礼教。他是造成祥林嫂悲剧的一个重要人物。

1.作者是通过什么手法来刻画这个人物的呢?

①间接描写:

通过鲁四老爷的书房陈设的描写,点明了鲁四老爷的身分(地主阶级、封建理学的卫道士),揭露了他的丑恶本质,从而揭示出他成为杀害祥林嫂的刽子手的深刻的阶级根源和思想根源。

②直接描写:

A.行动描写:

这表现在祥林嫂被抢走的两件事上:

当婆婆一边抢人一边来领工钱时,鲁四老爷把祥林嫂一文还没有的工钱全交给了婆婆。

与此相对照的是对被压迫的寡妇祥林嫂的冷酷无情。

祥林嫂曾那样辛勤地为鲁家劳动过,可当她遭到恶运时,鲁家却无动于衷,连祥林嫂走没走、怎么走的,都毫不过问,只是到了正午,四婶肚子饿了,这才想起了祥林嫂淘米时拿走米和淘箩,于是倾巢出动分头寻淘箩;连平时摆派头、端架子的鲁四老爷都踱出门外,直到河边,等看见米和淘箩平平正正的放在岸上,旁边还有一株菜时,这才放心。这场虚惊,入木三分地揭露了:在封建统治者的眼里,一个劳动妇女的命运都不如一个淘箩、一点米、一株菜,鲁四老爷冷酷残忍的嘴脸跃然纸上。

B.语言描写:

在祥林嫂的问题上,鲁四老爷一共开过六次口,说了百十来个字,却就把他反动、顽固、虚伪自私、阴险狠毒的性格特征,把他杀害祥林嫂的罪行,揭露得淋漓尽致。

a.祥林嫂被抢前:

b.祥林嫂被抢时:

c.当他为寻淘箩,踱到河边时:

d.紧接着,午饭之后,卫婆子又来时:

e.对四婶的暗暗告诫:

f.祥林嫂死后:

作为这六次开口背景的是鲁四老爷虚伪寒暄后的大骂其新党,它恰恰深刻地揭示了那六次开口的根源。

三、分析我这一形象:

小说中的我是一个具有进步思想的小资产阶级知识分子的形象。我有反封建的思想倾向,憎恶鲁四老爷,同情祥林嫂。对祥林嫂提出的魂灵的有无的问题,之所以作了含糊的回答,有其善良的一面;同时也反映了我的软弱和无能。

在小说的结构上,我又起着线索的作用。祥林嫂一生的悲惨遭遇都是通过我的所见所闻来展现的。我是事件的见证人。

四、分析柳妈:

问:有人认为柳妈是帮助鲁四老爷杀害祥林嫂的凶手。你是怎样来看待这一问题呢?

明确:柳妈和祥林嫂一样都是旧社会的受害者。虽然她脸上已经打皱,眼睛已经干枯,可是在年节时还要给地主去帮工,可见,她也是一个受压迫的劳动妇女。但是,由于她受封建迷信思想和封建礼教的毒害很深,相信天堂、地狱之类邪说和饿死事小,失节事大的理学信条,所以她对祥林嫂改嫁时头上留下的伤疤,采取奚落的态度。至于她讲阴司故事给祥林嫂听,也完全出于善意,主观愿望还是想为祥林嫂寻求赎罪的办法,救她跳出苦海,并非要置祥林嫂于死地,只是结果适得其反。

她的主观愿望和客观效果的矛盾说明柳妈是以剥削阶级统治人民的思想──封建礼教和封建迷信思想为指导,来寻求解救祥林嫂的药方的,这不但不会产生疗效的效果,反而给自己的姐妹造成了难以支持的精神重压,把祥林嫂推向更恐怖的深渊之中。

高一数学函数教案(篇7)

教学目标:

掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培养学生的创新意识.

教学重点:

二倍角公式的推导及简单应用.

教学难点:

理解倍角公式,用单角的三角函数表示二倍角的三角函数.

教学过程:

Ⅰ.课题导入

前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.

先回忆和角公式

sin(α+β)=sinαcosβ+cosαsinβ

当α=β时,sin(α+β)=sin2α=2sinαcosα

即:sin2α=2sinαcosα(S2α)

cos(α+β)=cosαcosβ-sinαsinβ

当α=β时cos(α+β)=cos2α=cos2α-sin2α

即:cos2α=cos2α-sin2α(C2α)

tan(α+β)=tanα+tanβ1-tanαtanβ

当α=β时,tan2α=2tanα1-tan2α

Ⅱ.讲授新课

同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α

同学们是否也考虑到了呢?

另外运用这些公式要注意如下几点:

(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2+kπ及α≠π4+kπ2(k∈Z)时才成立,否则不成立(因为当α=π2+kπ,k∈Z时,tanα的值不存在;当α=π4+kπ2,k∈Z时tan2α的值不存在).

当α=π2+kπ(k∈Z)时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:

即:tan2α=tan2(π2+kπ)=tan(π+2kπ)=tanπ=0

(2)在一般情况下,sin2α≠2sinα

例如:sinπ3=32≠2sinπ6=1;只有在一些特殊的情况下,才有可能成立

高一数学函数教案(篇8)

一、学习目标与自我评估

1掌握利用单位圆的几何方法作函数的图象

2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期

3会用代数方法求等函数的周期

4理解周期性的几何意义

二、学习重点与难点

“周期函数的概念”,周期的求解。

三、学法指导

1、是周期函数是指对定义域中所有都有

,即应是恒等式。

2、周期函数一定会有周期,但不一定存在最小正周期。

四、学习活动与意义建构

五、重点与难点探究

例1、若钟摆的高度与时间之间的函数关系如图所示

(1)求该函数的周期;

(2)求时钟摆的高度。

例2、求下列函数的周期。

(1)(2)

总结:(1)函数(其中均为常数,且

的周期T=。

(2)函数(其中均为常数,且

的周期T=。

例3、求证:的周期为。

例4、(1)研究和函数的图象,分析其周期性。

(2)求证:的周期为(其中均为常数,

总结:函数(其中均为常数,且

的周期T=。

例5、(1)求的周期。

(2)已知满足,求证:是周期函数

课后思考:能否利用单位圆作函数的图象。

六、作业:

七、自主体验与运用

1、函数的周期为()

A、B、C、D、

2、函数的最小正周期是()

A、B、C、D、

3、函数的最小正周期是()

A、B、C、D、

4、函数的周期是()

A、B、C、D、

5、设是定义域为R,最小正周期为的函数,

若,则的值等于()

A、1B、C、0D、

6、函数的最小正周期是,则

7、已知函数的最小正周期不大于2,则正整数

的最小值是

8、求函数的最小正周期为T,且,则正整数

的值是

9、已知函数是周期为6的奇函数,且则

10、若函数,则

11、用周期的定义分析的周期。

12、已知函数,如果使的周期在内,求

正整数的值

13、一机械振动中,某质子离开平衡位置的位移与时间之间的

函数关系如图所示:

(1)求该函数的周期;

(2)求时,该质点离开平衡位置的位移。

14、已知是定义在R上的函数,且对任意有

成立,

(1)证明:是周期函数;

(2)若求的值。

高一数学函数教案(篇9)

【内容】建立函数模型刻画现实问题

【内容解析】函数模型本身就来源于现实,并用于解决实际问题,所以本节内容是通过对展现的实例进行分析与探究使得学生能有更多的机会从实际问题中发现或建立数学模型,并能体会数学在实际问题中的应用价值,同时本课题是学生在初中学习了函数的图象和性质的基础上刚上高中进行的一节探究式课堂教学。在一个具体问题的解决过程中,学生可以从理解知识升华到熟练应用知识,使他们能辩证地看待知识理解与知识应用间的关系,与所学的函数知识前后紧紧相扣,相辅相成。;另一方面,函数模型本身就是与实际问题结合在一起的,空讲理论只能导致学生不能真正理解函数模型的应用和在应用过程中函数模型的建立与解决问题的过程,而从简单、典型、学生熟悉的函数模型中挖掘、提炼出来的思想和方法,更容易被学生接受。同时,应尽量让学生在简单的实例中学习并感受函数模型的选择与建立。因为建立函数模型离不开函数的图象及数据表格,所以会有一定量的原始数据的处理,这可能会用到电脑和计算器以及图形工具,而我们的教学应更加关注的是通过实际问题的分析过程来选择适当的函数模型和函数模型的构建过程。在这个过程中,要使学生着重体会的是模型的建立,同时体会模型建立的可操作性、有效性等特点,学习模型的建立以解决实际问题,培养发展有条理的思维和表达能力,提高逻辑思维能力。

【教学目标】

1体现建立函数模型刻画现实问题的基本过程.

2了解函数模型的广泛应用

3通过学生进行操作和探究提高学生发现问题、分析问题、解决实际问题的能力

4提高学生探究学习新知识的兴趣,培养学生,勇于探索的科学态度

【重点】了解并建立函数模型刻画现实问题的基本过程,了解函数模型的广泛应用

【难点】建立函数模型刻画现实问题中数据的处理

【教学目标解析】通过对全班学生中抽样得出的样本进行分析和处理,,使学生认识到本节课的重点是利用函数建模刻画现实问题的基本过程和提高解决实际问题的能力,在引导突出重点的同时能过学生的小组合作探究来突破本节课的难点,这样,在小组合作学习与探究过程中实现教学目标中对知识和能力的要求目标1,2,3在如何用函数建模刻画现实问题的基本过程中让学生亲身体验函数应用的广泛性,同时提高学生探究学习新知识的兴趣,培养学生主动参与、自主学习、勇于探索的科学态度,从而实现教学目标中的德育目标目标4

【学生学习中预期的问题及解决方案预设】

①描点的规范性;②实际操作的速度;③解析式的计算速度④计算结束后不进行检验

针对上述可能出现的问题,我在课前课上处理是,课前给学生准备一些坐标纸来提高描点的规范性,同时让学生使用计算器利用小组讨论来进行多人合作以期提高相应计算速度,在解析式得出后引导学生得出的标准应该是只有一个的较好的,不能有很多的标准,这样以期引导学生想到对结果进行筛选从而引出检验.

【教学用具】多媒体辅助教学ppt、计算机。

【教学过程】

教学前言:

函数模型是应用最广泛的数学模型之一,许多实际问题一旦认定是函数关系,就可以通过研究函数的性质把握问题,使问题得到解决.

【教学过程】

教学前言:

函数模型是应用最广泛的数学模型之一,许多实际问题一旦认定是函数关系,就可以通过研究函数的性质把握问题,使问题得到解决.

教学内容师生活动设计意图

探究新知引入:

教师:大家觉得我胖吗?

学生回答

教师:我们在街上见到一个人总是会判断这个人的胖瘦,我们衡量一个人的胖瘦一般是以自己或是他人为标准的,那么我们还见过一些用来计算人胖瘦的式子,目前全世界都使用体重指数BMI来衡量一个人胖或不胖:

体重/身高?以米为单位BMI在18.5-22.5时属正常范围,BMI大于22.5为超重,BMI大于30为肥胖。

教师在黑板上计算一下自己的结果。那既然能用一个式子来计算,说明我们可以把这个问题用数学知识来解决,要得到这个式子之类的标准,我们能用一个人的身高和体重来确定吗?

学生回答

教师:当然是找的人越多越好,那我们在课上先少找几个人来研究一下吧,每个小组选一个同学说一下你的身高和体重吧

学生说,教师把相关数据填在用ppT展示的一张表格上

教师:好,有了这些数据我们就可以来研究了,那接下来我们怎么来处理刚收集到的这些数据呢?

学生回答预期:画散点图——连线——找函数

教师:好,大家按小组先画图连线然后讨论一下你们小组认为哪个函数的图像符合

学生活动并回答

教师:好,那大家分一下工,你们几个小组来计算这个函数解析式,那几个小组来计算那个函数解析式……

学生分小组活动……

教师:把学生算出的式子写在黑板上大家计算出的解析式为什么会不完全相同呢?

学生回答

教师:我们计算的函数解析式是不是都可以用来刻画这个问题呢?

学生回答

教师:我们要怎么样来检验呢?

学生回答代入其它的点来验证

教师:那大家来检验一下哪个模型更符合数据情况

学生分小组进行检验

教师:好了,我们利用刚才收集的数据通过我们的努力得出了一个式子,它也就是符合大家的情况的一个胖瘦的标准,既是我们班的一个标准,能用来衡量其它班的同学吗?那我们来计算一下老师的结果是什么样的.

教师:可见用世界肥胖标准对老师的体重进行的评价和所建立的数学模型计算的结果是基本一致的。由此可见,所建立的模型是大体符合实际情况,看来老师是真得要下定决心减肥了.

教师由生活中常见到的现象引出问题,并引导学生进行思考

学生合作探究、动手实践,借助小组利用数据表格来确定可行的函数模型,并展示自己的结果

教师引导学生对结果进行检验

学生通过计算器与作图,利用小组合作在完成任务的同时形成本节重点并突破难点

通过日常生活的例子引出本节主要内容,来提高学生本节课学习的兴趣,提高小组学习的效率

学生利用小组合作在完成任务的同时形成本节重点的框架:函数刻画实际问题的基本过程.从而实现教学目标1,3,4

课堂小结

教师:我们一起来回忆一下刚才解决问题的过程引导学生集体回答

得出:函数建模刻画现实问题的基本过程:教师用ppT展示

教师:

①下面大家把自己的数据输入计算一下你的情况是什么样的

②大家在课下可以利用研究性学习的时间,调查一下全年级的同学的身高和体重来研究一下,并进一步体会函数建模来刻画现实问题的基本过程

教师用ppT展示函数建模刻画现实问题的基本过程

教师留下一个扩展性作业,让学生课后完成

学生通过探究从而巩固教学目标1,2,3,4.并形成本节重点.

把问题进行拓展,让学生去亲身体会函数建模刻画现实问题的基本过程,从而巩固了本节教学目标

课后反思

高一数学函数教案(篇10)

函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。

2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系;

3.函数方程思想的几种重要形式

(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。

(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;

(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;

(4)函数f(x)=(1+x)^n(n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;

(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;

(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。

高一数学函数教案(篇11)

教学目标

1.准确把握祥林嫂的形象特征,理解造成人物悲剧的社会根源,从而认识旧社会封建礼教的罪恶本质。

2.学习本文综合运用肖像描写、动作描写、语言描写等塑造人物的方法。

3.体会并理解本文环境描写的作用,理解本文倒叙手法的作用。

教学课时:四课时

教学步骤:

第一课时

本课时重点理清小说的情节结构,了解倒叙的作用。

一、导入新课:

我们在初中曾经学过鲁迅的小说《故乡》、《孔乙己》,其中由活泼可爱而变成麻木愚昧的闰土,站着喝酒而穿长衫的孔乙己,都给我们留下了深刻的印象。今天,我们学习的是鲁迅先生又一篇著名的小说《祝福》。

二、介绍背景:

《祝福》写于1924年2月7日,是鲁迅短篇小说集《彷徨》的第一篇,最初发表于1924年3月25日出版的上海《东方杂志》半月刊第二十一卷第6号上,后收入《鲁迅全集》第二卷。

鲁迅以极大的热情欢呼辛亥革命的爆发,可是不久就失望了。他看到辛亥革命以后,帝制政权虽被推翻,但代之而起的却是地主阶级的军阀官僚的统治,封建社会的基础并没有彻底摧毁,中国的广大人民,尤其是农民,日益贫困化,他们过着饥寒交迫的生活,宗法观念、封建礼教仍然是压在人民头上的精神枷锁。鲁迅在《祝福》里,深刻地展示了这一时期中国农村的真实面貌。

这一时期的鲁迅基本上还是一个革命民主主义者,还不可能用马克思主义来分析观察,有时就不免发生怀疑,感到失望。他把这一时期的小说集叫做《彷徨》,显然反映了其时自己忧愤的心情。但鲁迅毕竟是一个真的猛士,敢于直面惨淡的人生,敢于正视淋漓的鲜血,他决不会畏缩、退避,而是积极奋斗。

《祝福》这篇小说通过祥林嫂一生的悲惨遭遇,反映了辛亥革命以后中国的社会矛盾,深刻地揭露了地主阶级对劳动妇女的摧残与迫害,揭示了封建礼教吃人的本质,指出彻底反封建的必要性。

三、研习课文:

1、自读预习提示,了解小说的教学重点,明确教学目标。

2、理清情节,了解倒叙的作用。

3、速读课文,概括各段内容。

提问:这篇小说是按时间顺序叙述,还是另有安排?

明确:本文在序幕以后就写出了故事的结局,这是采取了倒叙的手法。

提问:在结构上采取倒叙手法有什么作用?

讨论归纳:

设置悬念,使读者急于追根溯源探求原委;写祥林嫂在富人们一片祝福中死去,造成了浓重的悲剧气氛,而且死后引起了鲁四老爷的震怒,揭示了祥林嫂与鲁四老爷之间的尖锐的矛盾,突出了小说反封建的主题。

第二课时

本课时重点分析祥林嫂形象。

一、回顾小说的三要素:

情节、人物、环境(社会环境、自然环境)

二、分析祥林嫂形象:

小说的主题是靠人物形象来体现的。这一课的主人公就是祥林嫂。我们只有弄清楚祥林嫂的性格和命运,才能懂得《祝福》的主题。而作为人物形象又是通过故事情节──人和人之间的联系或冲突表现出来的。那么,祥林嫂究竟是一个什么样的人呢?我们就先来分析一下故事情节的开端、发展、高潮、结局,由此来把握祥林嫂的形象,领会《祝福》的主题。

1.开端:

①祥林嫂为什么要到鲁家做工?

小说的一开始,祥林嫂就是封建的宗法制度的牺牲品。因为正是父母之命,媒妁之言,迫使她嫁给一个比她小十岁的丈夫,而丈夫又过早地丧了命。祥林嫂因此陷入了嫁而守寡的悲惨的命运之中。按理说,年纪大约二十六七的祥林嫂是完全可以用自己的劳动在农村生活下去的,可是她家里还有严厉的婆婆,于是祥林嫂才被迫逃到鲁四老爷家里。

②祥林嫂是怎样对待使她嫁而守寡、备受虐待的宗法制度的呢?

高一数学函数教案(篇12)

教学目的:

1.训练按一定目的从课文中筛选信息的能力。

2.理解辩证立论,重点突出,广征博引,逐层深人的写法。

3.认识治学中占有材料与钻研理论的关系;树立实践第一的辩证唯物主义观点。

教学设想:

1.解读,关键要抓住“虚”与“实”的关系,理清课文的脉络,重点认识围绕基本观点立论辩证,广征博引、层层深人的论述特点,理清文章观点与材料之间的关系,把握课文的重点。

2.安排二课时。

教学过程及步骤:

一、开场白:

1980年10月22日,中国语言学会成立。吕叔湘先了题为《把我国语言科学推向前进》的讲话。全文分“中和外的关系”、“虚和实的关系”、“动和静的关系”、“通和专的关系”四个部分,分别论述了语言研究工作中需要处理好的四对关系。是其中的第二部分。题目是选作教材时编者加的。文章虽然“主要谈汉语研究”,但正如作者所言“在不同程度上也适用于其他方面”,对于一般治学和研究问题,对于中职学生的学习,包括.写作时处理好选材与立意的关系,都具有重要的指导意义。

二、作者简介:

吕叔湘(1904—1998),江苏丹阳人。当代著名语言学家、语文教育家,先后担任中国社会科学院语言研究所研究员、所长,兼任《中国语文》杂志主编,全国文字改革研究会主席,中国语言学会会长,语文出版社社长,并担任全国政协第二、三届委员,全国人大第三、四、五、六届代表,五届常委,法制委员会委员。他于1926年毕业于国立东南大学,曾任过中学教员。1936年留学英国,1938年回国。先后任云南大学文史系副教授、华西协和大学中国文化研究所研究员、金陵大学文化研究所研究员兼中央大学中文系教授、开明书店编辑。建国后任清华大学中文系教授,1952年到中国社会科学院语言研究所工作。他几十年来一直从事语文教学和研究,重点研究汉语语法,对我国语言学的发展作出了重要贡献。主要著作有《中国文法要略》、《语法修辞讲话》、《现代汉语八百词》等。他治学严谨,著述材料丰富,引证充分,阐述详尽,见解精辟。他还写有许多普及性语文读物,通俗实用,生动有趣。

三、分析课文:

全文共11段,可分为三个部分。

第一部分(第1~2段):系全文的总纲,提出论题并表明了观点:理论从事例中来,事例从观察中来、从实验中来。文章首句提出论题,紧接着以两个设问表明了观点。在接下来的阐述中,作者以语言学研究为例说明了理论来自于事例,事例来自于观察和实验的道理。文章的第2段运用古人做学问、国外各种学派林立和“禅宗和尚”的例子阐述对前人的理论也要靠观察来验证的道理。在论述中,作者既承认“前人的理论是我们的财富”,又指出“前人的理论无论多么重要”,都“要用自己的观察来验证”;既肯定了讲“家法”的好处,又指出其缺点,全面辩证,客观公允,令人信服。这一段是对第1段的进一步强调和补充。

第二部分(第3~6段):具体阐述理论和事实的辩证关系并指出了具体的处理方法。第3段从事实对理论的作用角度举出“反切”、“等韵”和“文字学”等理论的形成作为例证,指出事实能够决定理论。第4段从比较理论和事实轻重的角度,运用达尔文物种起源理论的形成和明朝两位理学家的故事作为论据,指出没有事实作基础,理论就靠不住,更加突出了事实对理论的决定性作用。第5段是从理论对事实的作用角度,肯定了理论能引导人去发现事实的作用。运用了门捷列夫元素周期表填写等例子。第6段具体提出处理二者关系的方法,特别强调“不可走极端”。这一部分的论述强调了事实对理论的决定性作用,其目的在于纠正现实中存在的重理论轻事实的认识。可贵的是作者“矫枉”而不“过正”,没有偏执一端,没有抹杀理论在治学中的作用,而是在轻重有别、详略有致、突出重点的同时,兼顾到了事物的各个方面,从而显得全面周到,辩证科学。作者对问题认识的深刻性和完整性由此可见一斑。

第三部分(第7~11段):着重论述观察和实验方面的有关问题。文章联系实际,在分析重理论轻事例的原因、指出其危害的同时,阐述了观察和实验必须具备的精神和态度,强调要亲自去观察、实验,收集事例。第7段对重理论轻事例的错误倾向提出批评,引用了饶裕泰教授的话作为论据,切合实际,富于针对性。第8段运用“有限与无眼”的故事和叶斯丕森的例子阐述观察、实验“不容易”的一个原因,指出观察、实验不能懒惰,必须具备换而不舍的精神。第9段阐述了观察、实验“不容易”的另一个原因,指出观察、实验不能有成见,必须有客观的态度。第10段收束上文,进一步指出不愿观察实验的害处。第11段指出观察、实验必须自己去做,彻底堵住了不愿观察、实验者的退路。这一部分是第二部分论述的具体化和深化。

四、.总结全文:

文章紧紧围绕治学过程中“虚与实”也就是理论和事例的关系问题,运用大量典型、生动的事实和理论材料,进行了全面透彻的论述。明确提出理论从事例中来,事例则从观察和实验中来的观点。文章针对重理论轻事例的现实,在辩证立论、全面论述的基础上,强调突出了观察、实验对理论形成的作用这一重点。全文第一部分提出两者关系的问题,表明观点;第二部分紧紧围绕观点,对两者关系展开论述;第三部分在论述两者关系的基础上,进一步阐述观察和实验的有关问题,从整体到局部,逐步剖析,层层深人,不断具体、深化,具有严密的逻辑性和较强的说服力。