数学6的分解教案13篇。
教案是老师上课之前需要备好的课件,每个老师都需要仔细规划教案课件。教案是教育教学过程中对学生进行培养和指导的必要手段。我们的编辑团队为您打造了一篇精美的“数学6的分解教案”文章,为避免遗忘请收藏此页!
数学6的分解教案 篇1
一、教学目标
【知识与技能】
了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。
【过程与方法】
通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。
【情感态度价值观】
在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。
二、教学重难点
【教学重点】
运用平方差公式分解因式。
【教学难点】
灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。
三、教学过程
(一)引入新课
我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?
大家先观察下列式子:
(1)(x+5)(x—5)=,(2)(3x+y)(3x—y)=,(3)(1+3a)(1—13a)=
他们有什么共同的特点?你可以得出什么结论?
(二)探索新知
学生独立思考或者与同桌讨论。
引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。
提问1:能否用语言以及数学公式将其特征表述出来?
数学6的分解教案 篇2
活动目标
1、学习5的分解组成,会按顺序分合。培养幼儿思维的逻辑性。
2、初步理解数的组成中的互换规律。
3、培养幼儿的观察力、判断力及动手操作能力。
4、引导幼儿积极与材料互动,体验数学活动的乐趣。
5、有兴趣参加数学活动。
活动准备
雪花片人手5个,菠萝图片5个
活动过程
一、动手操作
1、请幼儿自己动手操作手中的5个雪花片,试着把它分成两份,看有哪几种分法,师巡视
2、请一个能够比较好的按顺序分的小朋友到前面来展示自己的分法:在磁板上分5个菠萝的图片,!.来源:屈老.师教案网!分好一个说一遍意思,如:5可以分成1和4,1和4合起来就是5等,师用数字卡片摆出相应的分合式;依次摆下去。
3、提问:你是这样分的吗?这样分有什么好处?引导幼儿学会这种按顺序依次分的方法,以免漏掉。
4、小朋友再按这种方法分一下你的学具。
二、演示分合式,学习两个部分数间的互换关系。
1、出示5分成1和4,5分成4和1的分合式,让幼儿观察。
引导幼儿发现两种分法分出来的两个数的位置交换了,总数没有变。
2、同样观察5分成2和3,5分成3和2的分合式之间的互换关系。
三、猜棋子游戏。
数学6的分解教案 篇3
教学目标
1、进一步理解自然数、整数、整除、除尽、约数、倍数、奇数、偶数、素数、合数、质因数、分解质因数的概念,掌握能被2、5、3整除数的特征。
2、能对以上概念作正确判断,能熟练地把合数分解质因数。
教学重点、难点
重点、难点:理解概念,并能熟练运用。
教具、学具准备
教学过程
备注
一、知识整理与基本练习
1、判断:下列各式,哪些能整除?哪些不能整除?哪些能除尽?把算式填到相应的圈里。
6.991113除尽整除
186691
1042.40.8
反馈后提问:什么叫做整除?什么叫约数?什么叫倍数?说一说上面整除算式中谁是谁的约数?谁是谁的倍数?
2、练习:课本P65第1题。
(1)学生在课本上全体练(1人做在投影片上)
(2)投影反馈,矫正错误。
(3)提问:
A、自然数与整数之间有什么关系?(学生回答后出示投影片)
B、什么是素数?什么是合数?怎样判断一个数是素数还是合数?有哪些方法?171和395是素数还是合数?为什么?
C、么是奇数?什么是偶数?判断一个数是奇数还是偶数的标准是什么?
D、答:自然数()和()组成,或者由(),()和()组成。
3、练习,课本P66第4题(学生练习后反馈)
4、出示:在36、48、84、75、15、210、130、204这些数中,
(1)能被2整除的数有(),能被5整除的数有(),能被3整除的数有()。
(2)能同时被2、5整除的数有(),能同时被3、5整除的数有(),能同时被2、3整除的数有()。
(3)说一说,它们各有什么特征?
5、提问:
什么叫分解质因数?把课本P65第1题中的合数分解质因数。
教学过程
备注
(1)生练习(两个做在投影片上)
(2)反馈,矫正。
(3)练习:课本P66第6题(学生练习后反馈)
二、综合练习
1、填空:(投影片逐题出示,学生先思考,想好后再回答)
(1)12的全部约数有(),把72分解质因数是()。
(2)最小的自然数是(),最小的素数是()最小的合数是(),最小的奇数是(),最小的偶数是()。
(3)一个数的最大约数是60,则它的最小倍数是(),最小约数是()。
(4)自然数AB=4,则A能被B(),B是A的(),4能整除()。
2、练习:课本P66第5题(学生练习后反馈,说理)
3、思考题:
有一位初中生参加一次数学竞赛,别人问他成绩如何?他说:我的分数在60分以上并且我的分数,我的年龄和取得的名词的乘积是4275,你们说我考了几分?得了第几名?你能想出来吗?
三、课堂作业《作业本》
四、学生总结
通过知识整理及填空、选择、判断各种题型的训练,学生进一步掌握了各个概念,并能对各个概念加以区分。
数学6的分解教案 篇4
活动目标:
1.在操作中认识2的分解与组合。
2.培养幼儿的观察力、判断力及动手操作能力。
3.引导幼儿积极与材料互动,体验数学活动的乐趣。
4.培养幼儿比较和判断的能力。
5.引发幼儿学习的兴趣。
活动准备:
1.制做玩具灭火器两个。
2.与幼儿数量相同的多类玩具,每类两个。
3.小黑板、数字卡2数字卡1多个。
活动过程:
1.出示玩具灭火器,向幼儿提问:
这是什么工具,什么会人使用它
共有几个玩具灭火器,并请幼儿找出相应的数字卡2。
2.认识2的分解。把两个玩具灭火器分给两名幼儿,向幼儿提问每人手中有几个玩具灭火器,(.本文来源:屈老.师教案网)并让两位幼儿分别取1个数字卡1,引导幼儿明白两个灭火器分给两个小朋友就是每人1个,也就是2这个数可以分成1和1。老师在黑板上贴出2的组成形式(即2分为1和1)。
3.认识2的组合。请两位幼儿把玩具灭火器和数字卡还给老师,引导幼儿明白两个小朋友的灭火器合起来又成了两个灭火器,1和1合起来就是2,老师在黑板上贴出2的组合方式(即1和1合成2)。
4.请幼儿说出刚才的过程,引导幼儿进一步理解2的分解与组合。
5.给每个幼儿发两个玩具和相应的数字卡2、1,让幼儿操作2的分解与组合,老师进行指导。
活动评价:
1.理解2的分解与组合。
2.能利用玩具进行2的分解与组合操作。
数学6的分解教案 篇5
我说课的题目是选自华东师大版,八年级上册,第十四章第四节,因式分解,这是初中数学传统的经典,在新课标的理念下,重新理解它深刻的内涵。
为此,我设定说课程序是:
一、重新审视因式分解的教育价值
二、教材处理的设想
三、教学总体设计
四、教学过程概述
(一)重新审视因式分解的教育价值
传统的因式分解,是数学的工具使学生熟练掌握一些因式分解技能技巧,本来十分简单的问题演绎得十分复杂(如填数法,拆项法,凑和法,十字相乘法)
新课程把因式分解作为培养学生逆向思维,全面思考,灵活解决矛盾的载体。为此,淡化理论。简化难题,紧紧掌握最基本的教学方法(提取公因式法和公式法)即可。这是新课程体现教育价值最明显的变化。为此,在学生思维方法和对世上的事,要正,反两方面认识上下功夫,是这节课的重要所在。
通过整式乘法与因式分解互为逆向变换,使学生澄清这种逆是反过来的变换,不是逆运算—是教学的难点(逆运算,是在一个算式中,以两种形式不同实质不变的两种运算,而因式分解是一种恒等变换的两种说法)
为实现本节课的教育价值,在教学目标的确定上,重点考虑我的学生理解能力弱,善于模仿,满足于一知半解,我确定:
1、知识的能力目标:理解因式分解的意义,掌握提取公因式法和公式法,激发学生学习兴趣,培养学生创编因式分解题目的能力
2、方法与过程目标:采用自学自练的方法,逐见打开学生思维的大门,学会两分法看问题,体验知识发生过程就是学生思维发展的全过程
3、情感态度与价值观:通过情境教学,使学生在参与中激发学习情感,关注每一个学生的思维变化,鼓励成功全面体现学生的价值观,使学生满腔热忱,科学积极的态度,投入本节课的学习
(二)教材处理设想
我以我是教学资源的开发者的身份,重新组织教学内容,增加教学情境的创设,明确目的与动机,用实际问题是学生体验到这节内容的价值(见教学过程)
(三)教学总体设计
教学总体框架:教师设计生活中的实际问题,使学生在问题情境中展开思考→通过揭示因式分解的概念学习因式分解的意义→学生实践探索,发现提取公因式和公式法→熟练运用这种方法解题,发展学生的理性思维→通过学生的编题活动,培养学生思维创造性。
教学的主体是概念与方法20分钟训练上主题部分由学生自主探索,合作学习。
(四)教学过程概述
教学环节一:创设情境:“去过本溪吗?”“本溪的著名矿产是什么?”〈铁矿〉本溪歪头山的铁矿石,每吨含铁75%,采矿工人第一天采矿石203吨,那么,第一天矿石含铁多少?(75%×203)第二天采矿石198吨含铁(75%×198)第三天采矿216吨,含铁(75%×216)现将这三天采矿石的含铁量总数用代数式表示:75%×203+75%×198+75%×216,还可表示:75%(203+198+216),若果用a表示75%,用x、y、z表示三天的采矿数就有ax+ay+az=a(x+y+z)
通过此例,揭示因式分解的概念:把一个多项式化成几个整式积的形式,就是因式分解,结合ax+ay+az=a(x+y+z)揭示,这种方法叫提取公因式法“正好相反”通过讨论,认识到整式乘法与因式分解不是逆运算,而是互逆变换,从而突破了教学难点,实现了教学的第一目标
教学环节二:思维在探索中展开:教学中,抓住“反过来”让学生从思维的逆向考虑,如何分解因式,这里在学生完成
a(x+y+z)=ax+ay+az的基础上,再完成
ax+ay+az=a(x+y+z)
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)(a+b)
(制课件)
整式乘法因式分解
原型单项式与多项式、多项式与多项式相乘单项式与单项式、单项式与多项式、多项式与多项式相加
结果多项式因式乘积
范围都能完成不能完成:3ab+5ac+7mn
在学生的实践过程中,认识到多项式的因式分解是有条件限制的,不是所有的多项式都能因式分解。因此,会观察,判断,十分重要。
教学环节三:思维在展开教学中定势:本节课重点,掌握1、提取公因式法2、公式法对于这一新知识点,学生感到陌生,必须先使他们头脑中牢记,这就是先形成的思维定式
例如,公式法中,平方差公式a2—b2=(a+b)(a—b)
如—a2+25b216x2—4/9y2
特点:1两项式2平方3异号
教学环节四:思维在编题中创新:学生在认识整式乘法与因式分解的关系后,就不难编出很多因式分解的题目来(要求编题中,简单,明了,易解)
总之,教学的着眼点,不是熟练技能,而是发展思维,使学生在学习情感,态度的价值观上发生深刻的变化。
数学6的分解教案 篇6
教学目标
1、知识与技能
会应用平方差公式进行因式分解,发展学生推理能力。
2、过程与方法
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。
3、情感、态度与价值观
培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。
重、难点与关键
1、重点:利用平方差公式分解因式。
2、难点:领会因式分解的解题步骤和分解因式的彻底性。
3、关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来。
教学方法
采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维。
教学过程
一、观察探讨,体验新知
【问题牵引】
请同学们计算下列各式。
(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。
【学生活动】动笔计算出上面的两道题,并踊跃上台板演。
(1)(a+5)(a—5)=a2—52=a2—25;
(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。
【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律。
1、分解因式:a2—25;2、分解因式16m2—9n。
【学生活动】从逆向思维入手,很快得到下面答案:
(1)a2—25=a2—52=(a+5)(a—5)。
(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。
【教师活动】引导学生完成a2—b2=(a+b)(a—b)的同时,导出课题:用平方差公式因式分解。
平方差公式:a2—b2=(a+b)(a—b)。
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式)。
二、范例学习,应用所学
【例1】把下列各式分解因式:(投影显示或板书)
(1)x2—9y2;(2)16x4—y4;
(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;
(5)m2(16x—y)+n2(y—16x)。
【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解。
【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演。
【学生活动】分四人小组,合作探究。
解:(1)x2—9y2=(x+3y)(x—3y);
(2)16x4—y4=(4x2+y2)(4x2—y2)=(4x2+y2)(2x+y)(2x—y);
(3)12a2x2—27b2y2=3(4a2x2—9b2y2)=3(2ax+3by)(2ax—3by);
(4)(x+2y)2—(x—3y)2=[(x+2y)+(x—3y)][(x+2y)—(x—3y)]=5y(2x—y);
(5)m2(16x—y)+n2(y—16x)
=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。
数学6的分解教案 篇7
活动目标:
1.学习6的分解组成,知道6有5种分法。
2.能按数的递增递减规律列出6的组成,并用语言清楚表述。
3.乐于操作,能大胆表达自己的发现。
活动重点:学习6的分解组成,知道6有5种分法。
活动难点:能按数的递增递减规律列出6的组成,并用语言清楚表述。
活动准备:
1.经验准备:幼儿已经掌握9以内数的分解组成。
2.物质准备:雪花片24片,双面彩色纸24片,动物指偶24个,铅笔12根,记录单12张,牛奶盒12个,积木12个,水瓶12个,数字卡片1—6,花朵卡片5张和蝴蝶卡片5张。
活动过程:
开始部分:
1.游戏导入,复习5以内的分解和组成。
师:看一看黑板上是数字3?今天我们玩一个数字游戏,我说的数和你说的数能组合成3。
师:我说1,幼儿说我说2,1和2可以组成3。(拍手打节奏越来越快)
小结:我们已经学过了5以内的分解组成,你们记得5有几种分法,请你们说一说。
基本部分:
1.幼儿第一次自主操作,探索10的分解组成。
师:今天我们一起来玩数字6的分解组成游戏?
师:每张桌子上都有操作材料,请你们每人拿出6个操作材料动手去找一找,如果每一组的小椅子坐满了,可以选择其他材料。
(1)第一组:将雪花片分别放在两种不同颜色的纸盘,探索6的分解组成。
(2)第二组:将双面颜色的彩纸进行翻动,探索6的分解组成。
(3)第三组:将指偶放在两张颜色不同的纸上,探索6的分解组成。
2.教师进行总结记录,幼儿学习。
师:谁来说一说你是怎么分的?
师:谁还有不同的方法?
师:你们发现6有几种分法?
教师小结:6有5种分解组合方法。
师:怎样记录可以方便我们准确,更快速地记住呢?
师:谁愿意分享给大家?
3.幼儿第二次自主操作,探索方便的记录方法。
师:请小朋友们两两合作,一人记录,一人操作,再次完善自己的操作结果。
(1)将积木分一分,探索6的分解组成。
(2)将水瓶分一分,探索6的分解组成。
(3)将牛奶盒分一分,探索6的分解组成。
师:谁愿意分享自己的操作结果?
小结:6可以分成1和5,2和4,3和3,4和2,5和1,.同时它们也可以组成6。
师:你们发现左右两边的数按什么规律进行排列?
小结:左边顺数,右边倒数的规律,在以后的书写时这样可以方便我们更快速地记住。
结束部分:
1.蝴蝶找花游戏,加强巩固。
师:听音乐《蝴蝶飞飞》,找朋友,必须让你身上的数字合起来为6。
2.延伸活动
师:今天小朋友玩的很开心,在生活中我们试着去分一分吧。
数学6的分解教案 篇8
活动目标
1.根据已有5的分解经验,感知6的分解组成,掌握6的五种分解方法。
2.通过帮小动物们分家,理解数的互补关系和互换关系的规律。
3.有观察力、分析力、记录能力,产生对数学探究的兴趣。
4.让幼儿懂得简单的数学道理。
5.提高逻辑推理能力,养成有序做事的好习惯。
重点难点
让幼儿掌握6的五种分解方法。(重点)
让幼儿理解数的互补关系和互换关系的规律。(难点)
活动准备
物质准备:蚂蚁搬家图片,熊猫图片,鱼图片,记录卡,数字卡片
经验准备
幼儿已掌握5的分解和组成
活动过程
一、情景导入,激发兴趣
老师:小朋友们早上好呀!今天老师带来了一幅图片(教师出示蚂蚁搬家图片),
请小朋友们仔细观察,说说你们发现了什么?(随机提问幼儿)对,是小蚂蚁在搬家。冬天到了森林里的小动物们都在搬家,熊猫一家邀请我们去帮助他们搬家,我们一起去看看吧!(出示熊猫及房子图片)
二、通过游戏,深入探索
1.老师:你在图片里看到了什么呀?那就请小朋友帮助小熊猫来分房子吧。请小朋友到前面说一说自己帮熊猫分房子的结果是什么?(随机提问并记录幼儿的分法然后师幼贴数字卡片共同呈现分解结果)
2.(出示池塘图片)
老师:熊猫家养了一池塘的小鱼,这些小鱼也需要搬去新家,现在熊猫每家都只有一个鱼缸,我们帮他们把这个问题也解决了吧!(请小朋友们上前分解)
3.创编儿歌,加深记忆。
6条小鱼水中游,一边1一边5。
6条小鱼吐泡泡,一边2一边4。
6条小鱼来跳舞,一边3一边3。
6条小鱼翻跟头,一边4一边2。
6条小鱼笑嘻嘻,一边5一边1。
三、幼儿观察,发现规律
引导幼儿观察“6”的分解式,共同探讨规律,进一步理解并掌握有序的进行“6”的分解组成。启发幼儿发现左侧数字是逐一递减的.,右侧数字是逐一递增的。从而得出:分出来的两个数一个数减1,另一个数加1,总数不变。(互补关系)。同样,再引导幼儿比较第二组和第四组,认识到:他们都有2和4,只是换了个位置,2和4、4和2合起来都是6(互相交换)。
四、课堂总结,巩固知识
玩数字游戏碰球
交代游戏要求:两个数合起来是6。
师:我的1球碰几球?(随机提问,幼儿自由回答)。
活动总结
帮小动物们分家是一个有趣有爱心的操作游戏,他既能让孩子增长知识,又提高了他们的观察力,分析力,以及探究欲望。幼儿在操作过程中由于年龄阶段的特点,可能需要教师进行及时的指导和关注。
5、数学《鳄鱼的牙医》大班教案6的分解组成反思
活动目标
1.通过自主探索动手操作,感知6的分解组成,掌握6的5种分法。
2.在感知数的分解组成的基础上,掌握数组成的递增、递减规律、互相交换的规律。
3.能在数学活动中提高观察力、分析力和记录能力。
4.通过各种感官训练培养幼儿对计算的兴致及思维的准确性、敏捷性。
5.培养幼儿相互合作,有序操作的良好操作习惯。
活动准备
6的分解记录卡片、ppt
活动过程
1.复习游戏---对对碰
教师:我说5,
幼儿:我说5,
教师:5可以分成1和几
幼儿:5可以分成1和4.
2.故事:鳄鱼的牙医(幼儿用书p30)
(1)1条鳄鱼妈妈养了5只小鳄鱼。请你们说说鳄鱼妈妈家一共有几条鳄鱼?(6条)教师板书:6可以分成5和1.
(1)鳄鱼家的牙齿保健医生有6位,分别是3只雌性牙签鸟和3只雄性牙签鸟。教师板书:6可以分成3和3.
(2)鳄鱼家的好朋友是6只小青蛙,分别是2只青蛙姐姐和4只青蛙妹妹。教师板书:6可以分成2和4.
3.观察6的5种分解组成的方法,讨论发现数字的变化规律。
(1)请幼儿分苹果。
①幼儿将6只苹果分在两个果篮子里,请幼儿说一说自己分的结果,教师将每分一次的结果记录下来。
②教师归纳幼儿的分法,总结出“6”的5种分法。
(2)学习有序进行“6”的分解组成。
①教师演示给6个苹果分在两个篮子里,一边分一边和幼儿点数两个篮子里苹果的数量,并记录下分的结果,“6”可以分成1和5、2和4、3和 3、4和2、5和1.
(2)幼儿观察“6”的分解式,初步掌握有序的进行“6”的分解组成,了解数组成的递增、递减规律、互相交换的规律。
小结:6的分解组成有5种。每组左边的数一个比一个大1,右边的数一个比一个少1,这种分解方法叫做互补法。
延伸延伸
在数学区域中,投入纽扣、小石头等,进行分解组成的练习并记录。
活动反思
学习数的分解,可使幼儿初步理解整体与部分、部分与部分之间的关系,进一步加深幼儿对数概念的理解,并为学习加减法打基础。学习数的分解对幼儿来说有些难度,掌握起来不太容易。幼儿只有在实际动手操作中感知,才能真正理解、掌握数的分解。因此,本次活动,我以幼儿的操作探索为主,让幼儿在操作中发现6的分解方法,再辅助与教师的总结概括,使幼儿对6的分解有清晰的认识,最后以游戏的形式进行巩固,使幼儿在轻松愉快的氛围中巩固知识。但由于幼儿的操作、分析、概括能力有个体差异,有的幼儿不能完整的掌握6的所有分解方法,所以还需要在今后的自选活动中进行个别指导
数学6的分解教案 篇9
新《纲要》中关于数学领域的目标定义为“能从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣。”所以我和幼儿互动。让幼儿在游戏中学到新的知识。
1、引导幼儿通过实物操作。学习3的分解组成,了解互换规律。
2、培养幼儿的理解能力。
3、引导幼儿积极与材料互动,体验数学活动的乐趣。
4、发展幼儿逻辑思维能力。
每个幼儿1个小盒子、2个小口袋、3个苹果图。
(一)3的分解。
1、以讲故事的形式引题。
教师:秋天到了,果园里的苹果都成熟了,果园里的叔叔给我们每一位小朋友都摘了苹果,不过果园里的叔叔说要答对题目才可以“吃”。大家现在看看,你的小盒子里有几个苹果?
2、教师:我们的爸爸妈妈工作辛苦了一天了,让我们把它放到2个口袋里带回家让他们尝一尝好吗?幼儿回答。
3、引导幼儿说出自己是怎样分苹果的。并引导幼儿理解3可以分解成2和1,1和2。
(二)学习3的减法。
1、教师请一位小朋友让他说说把果园叔叔给我们的3个苹果。其中一袋给爸爸,那妈妈的那一袋应该是几个?(让幼儿动手操作、数一数、说一说)
2、引导幼儿根据分解式,学习3的减法算式。
(3可以分成1和2,2和1,3—1=2,3可以分成2和1,1和2,3—2=1)
3、引导幼儿根据教师的故事进行操作。
(三)学习3的加法。
1、教师:爸爸妈妈是爱我们的,爸爸的苹果和妈妈的苹果又放回了盒子里。宝宝们你们摸一摸现在的盒子里有几个苹果?(让幼儿动手操作、数一数、说一说)
2、学习3的组成,让小朋友知道3是由1和2或2和1组成。1+2=3,2+1=3
3、引导幼儿根据教师的故事进行操作。
小朋友问问你,
3可以分成几和几?
老师,我告诉您,
3可以分成1和2,
1和2合起来是3。
3可以分成2和1,
这节课我根据幼儿的思维特点和学习规律,在轻松的游戏中,帮助幼儿通过充分的实物操作、建立和理解数及符号的意义,真正地掌握数的.概念由此得出。活动中我选用了小盒子、苹果图和小口袋都是幼儿平常熟悉、喜欢玩的物品,既能让幼儿在活动中锻炼手部小肌肉的灵活性,又能把数学中数物的匹配练习融入其中,使数学活动更具有情趣性。有趣的游戏激发了幼儿参与活动的愿望和操作乐趣。
在活动中我是介绍者和参与者,是幼儿的游戏伙伴。当幼儿活动中出现困难时,我有点急,反复的告诉幼儿。这时幼儿就显得没有信心了。在以后的教学中我应适时的加以引导、鼓励,倾听幼儿的讨论与表述。
老师都应该有一颗宽容的心,当我们在面向全体幼儿的同时,特别注意个体差异,尤其在材料投放上,要充分考虑不同幼儿的需要,有针对性地进行指导。
数学6的分解教案 篇10
活动目标
1. 在操作中认识2的分解与组合。
2. 培养幼儿对数字的认识能力。
3. 让幼儿懂得简单的数学道理。
4. 引发幼儿学习的兴趣。
5. 引导幼儿积极与材料互动,体验数学活动的乐趣。
活动准备
1. 制做玩具灭火器两个。
2. 与幼儿数量相同的多类玩具,每类两个。
3. 小黑板、数字卡2、数字卡1 多个。
活动过程
1. 出示玩具灭火器,向幼儿提问:
这是什么工具,什么会人使用它?
共有几个玩具灭火器,并请幼儿找出相应的数字卡2。
2. 认识2 的分解。把两个玩具灭火器分给两名幼儿,向幼儿提问每人手中有几个玩具灭火器,并让两位幼儿分别取 1 个数字卡 1 ,引导幼儿明白两个灭火器分给两个小朋友就是每人 1 个,也就是 2 这个数可以分成 1 和 1 。老师在黑板上贴出 2 的组成形式(即 2 分为 1 和 1)。
3. 认识2 的组合。请两位幼儿把玩具灭火器和数字卡还给老师,引导幼儿明白两个小朋友的灭火器合起来又成了两个灭火器,1 和1 合起来就是 2 ,老师在黑板上贴出 2 的组合方式(即 1 和 1 合成 2 )。
4. 请幼儿说出刚才的过程,引导幼儿进一步理解2 的分解与组合。
5. 给每个幼儿发两个玩具和相应的数字卡2、1,让幼儿操作2 的分解与组合,老师进行指导。
活动评价
1.理解2 的分解与组合。
2.能利用玩具进行2 的分解与组合操作。
活动反思
活动的设计根据新《纲要》精神,要求幼儿“从生活和游戏中感知事物的数量关系”,还要关注幼儿探索、操作、交流、问题解决和合作的能力。数的组成和分解是数概念教育内容中的一个重要组成部分。我尝试让幼儿亲自动手操作、然后记录结果,在教师的引导下寻找分解和组成的规律,让幼儿在玩中学,以达到活动目标与幼儿兴趣最优化的结合。感知2的分解组成,掌握2的1种分法,在感知数的分解组成的基础上,掌握数组成的递增、递减规律、互相交换的规律。
数学6的分解教案 篇11
知识点:
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。
教学过程:
因式分解知识点
多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:
(1)提公因式法
如多项式
其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用
写出结果。
(3)十字相乘法
对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根X1,X2,那么
2、教学实例:学案示例
3、课堂练习:学案作业
4、课堂:
5、板书:
6、课堂作业:学案作业
7、教学反思:
数学6的分解教案 篇12
设计意图:
同数分解对幼儿来说很难,掌握起来十分不容易,幼儿只有在实际动手操作中感知,才能真正理解、掌握同数分解,因此我结合《纲要》精神,根据幼儿年龄特点和思维的具体形象性,设计本次活动以游戏和动手操作贯穿始终,让幼儿轻松愉快的活动中理解并掌握同数分解。
活动目的:
1、幼儿知道将一个数分成相同的几部分的分解是同数分解。
2、了接大数对小数的包含关系。
活动准备:
课件、学具
活动过程:
一、问答游戏编花篮,复习6的分解组成。
师:今天我们来玩编花篮的游戏好吗?小朋友编的数和老师编的数合起来是6。师:编、编、编花篮,编个花篮采花甜,我编1,你编几?幼:你编1我编5,1和5和起来是6。
二、分花操作游戏使幼儿发现6的同数分解。
1、出示电脑动画6朵花,引导幼儿学习。
2、师:你们看老师给你们带来了什么?
幼:花朵师:一共有几朵花?
幼:6朵花。
这些花有什么不同?
幼:大小不同,颜色不同,形状不同。
(幼儿很容易的发现花的形状、大小、颜色不同。)
2、游戏分花,使幼儿通过操作学具能够找出6的同数分解。
师:老师也给每个小朋友准备了相同的6朵花,请小朋友根据特征将它分一分,看看都能分成几和几?幼:6能分成3和3,6能分成2和2和2,6能分成6个1。
(幼儿找出了6的所有同数分解。)
3、幼儿说出操作结果,教师在电脑上演示组成式。
4、引导幼儿观察组成式发现同数分解的特点。
师:在这三个组成式中,有一个小秘密,谁发现了?幼:有6个1。
幼:1是一样的。
幼;1、2、3都比6小。
(幼儿都能发现同数分解的部分数相同。)教师小结:这三个组成式有的分成两部分,有的分成几部分,它们的部分数都相同,而且都比总数小。象这样把一个数分成相同的几部分的分解组成叫同数分解。
5、出示电脑动画,区分同数分解与其他的分解组成。
请幼儿找出哪些是同数分解,哪些不是同数分解。
(幼儿能正确的找出同数分解。)
三、游戏蝴蝶找朋友,通过操作学具使幼儿发现10以内数的同数分解
1、教师为幼儿准备不同数量的蝴蝶,请幼儿找到10以内数的同数分解。
(幼儿能够根据自己蝴蝶的数量找到同数分解。)
2、幼儿说出操作结果,教师在电脑上演示组成式。
3、师:除了1以外10以内的数都能进行同数分解,至少有几种方法?
幼:一种。
师:是怎么分的?
幼:都能分成1、1、1、1教师小结:除了1以外的数都能进行同数分解,而且至少有一种方法,就是是几就分成几个1,如3分成3个1、8分成8个1。
四、出示电脑动画游戏,巩固10以内数的同数分解
1、师:小朋友都知道了同数分解的方法,现在我们就来玩一个抢答的游戏,老师出题,会的小朋友举手,谁举的最快我就叫谁来回答,答对的就可以得到小企鹅的夸奖,答错了小企鹅就会摔倒。
2、电脑显示10以内的数,幼儿以抢答形式进行同数分解。回答后,电脑显示正确答案,答对了,小企鹅跳起来说:嘿,你真棒。答错了,小企鹅随着音乐声眼冒金星摔倒在地。
(幼儿对同数分解掌握的很好,兴高采烈的抢答,都想得到小企鹅的夸奖。)
五、活动延伸游戏编花瓣。
1、师:除了10以内数能进行同数分解,大数也能进行同数分解。现在,我请全班小朋友来玩编花瓣的游戏,老师说编成几瓣,小朋友就几个人手拉手蹲下表示编好。没编好花瓣的小朋友不能蹲下,现在我们就来报数,看看我们班有多少小朋友。(幼儿报数后,知道班级有30名小朋友。)
2、幼儿游戏:寻找30的同数分解,如编、编、编花瓣,你也编,我也编,快快编成5瓣花,教师总结游戏结果:小朋友都找到伙伴编花瓣了,一共编成了6个5瓣花,说明30能进行同数分解,能分成6个5。幼儿继续游戏,分别编成1、2、3、4、6、7、8、9、10瓣花,找一找30能否进行其他数的同数分解。
(幼儿热烈游戏,每个幼儿都极力的快速找到伙伴来编花瓣。在游戏过程中,幼儿充分理解了同数分解的含义。)
六、结束:小朋友,大数也能进行同数分解,而且有些大数同数分解的方法更多,小朋友回家也找一找其它大数的同数分解,好吗?
反思:
同数分解对幼儿来说很难,掌握起来十分不容易,幼儿只有在实际动手操作中感知,才能真正理解、掌握同数分解,因此结合《纲要》精神,根据幼儿年龄特点和思维的具体形象性,设计本次活动以游戏和动手操作贯穿始终,让幼儿在轻松愉快的活动中理解并掌握同数分解。
在教学活动过程中,教师注重以幼儿为主体,引导幼儿通过观察、操作,自己发现规律,并通过课件的应用和学具的使用把抽象的知识形象化、具体化,使教学内容富有儿童情趣,同时设计的多种游戏编花篮、蝴蝶找朋友及电脑游戏和小企鹅抢答等充分引起了幼儿的兴趣,调动了幼儿的积极性。幼儿在活动中主动探索,思维活跃,思路开阔,能够大胆思考,想出多种方法进行同数分解,在愉快的活动中轻松掌握了较难的教学内容。尤其是最后一个编花瓣的游戏,使幼儿了解了大数的同数分解,更激发了幼儿深入探索数学奥秘的兴趣。
整个活动过程中幼儿自主探索、大胆发言,幼儿的想象力、语言表达能力得到充分发展,可以说教学的各个环节能够很好的调动幼儿而学习积极性,做到动静结合,另外,教具准备精心、充分,教师教态亲切自然,在教学中教师具有较强的随机性,提出的问题具有启发性。
数学6的分解教案 篇13
教学目的
1.使学生理解质因数、分解质因数的意义,初步会把一个合数分解质因数.
2.培养学生观察、比较、抽象、概括的能力.
教学重点
质因数和分解质因数的意义.
教学难点
用短除式分解质因数.
教学过程
一、引入
1.在5、13、21、32中,哪些是质数?哪些是合数?为什么?
2.把上面各数用两个自然数相乘的形式表示出来.
5=()()13=()()
21=()()32=()()
教师:填出的这些数与原数有什么关系?
3.以上几个自然数都可以用两个因数相乘的形式表示,其它的自然数行吗?
教师:用一句话来概括,一个自然数可以用什么形式表示出来?
板书:把一个自然数用两个因数相乘的形式表示出来.
二、新授
1.如果我们做一个规定,1除外(板书于因数外),也就是因数不能用1,这句话还能这么说吗?举例说明.
教师:在因数不用1的前提下,什么数仍能用两个因数相乘的形式表示,什么数就不能?
(合数能,质数不能)
板书:把一个合数用两个因数(1除外)相乘的形式表示出来.
2.根据这条结论把下面几个合数用两个因数相乘的形式表示出来.
6、15、24、28
6=2324=212
15=35=38
=46
28=47
=214
3.这些合数(指24、28)的因数中还有合数12、8、6......根据刚才的结论又可以用什么形式表示?现在不限制因数的个数(擦去结论中的两个)把这些合数用最多个因数相乘的形式表示出来.
组织学生讨论汇报.
24=2223
教师:6和15还能不能用更多个因数相乘的形式表示?为什么不能?
明确:这些因数都是质数,根据这一特点,我们给它们起一个名字?(质因数)
根据黑板上的例子说一说什么叫质因数?
4.反馈练习
6的质因数有().2和3是6的()
2和3还是谁的质因数?24的质因数有哪些?
28的质因数有哪些?
如果说3和5是质因数对吗?怎么改?
(12、4、6......)这几个因数是不是质因数?
5.现在我们是把一个合数用什么形式表示出来?
教师根据学生回答在原结论中添上质字,去掉1除外.
同步板书课题:分解质因数.
三、练习
1.判断下面各题,对的画,错的画,并说明理由.
(1)35分解质因数是35=157()
(2)60分解质因数是60=2310()
(3)27分解质因数是27=333()
(4)14分解质因数是27=14()
2.把下面各数分解质因数.
(1)口答:4、6、8、9、10.
(2)笔答:16、18、54.
3.把9、90、900分解质因数,你发现什么?
四、小结
什么叫质因数?什么叫分解质因数?分解质因数时我们要注意哪些问题?
五、作业
1.把下面各数分解质因数.
81216245472
2.下面的数是由哪几个质数相乘得到的.
102127354950
六、板书设计
GZ85.com扩展阅读
分数的解决问题教案15篇
您可以考虑浏览一下“分数的解决问题教案”,或许能够为您带来一些新的灵感和思路。请注意,以下信息仅供参考,请慎重使用。教案和课件是老师日常工作中不可或缺的一部分。每天都要为每节课编写教案和制作课件。同时,在编写教案和制作课件时,需要设计内容以便学生能够更快地理解各个知识要点。
分数的解决问题教案 篇1
教材分析:
这部分内容是在学生学过分数应用题的解答和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。这部分内容主要教学求一个数是另一个数的百分之几的应用题。这种应用题与求一个数是另一个数的几分之几的应用题相同,但程度上有所加深。这是因为,分数和百分数都可以表示两个数的比。所以,百分数应用题的解题思路和方法与分数应用题大致相同。解答百分数应用题,既可以加深对百分数的认识,又加强了知识间的联系。为了加强百分数的应用,教材还在例2之后列举了小麦的出粉率、产品的合格率、职工的出勤率等几个工农业生产和统计工作中经常用到的计算公式,并让学生说说还有哪些求百分数的例子。这样既扩大了学生所学的知识范围,又能通过练习加深对百分数的认识,同时也渗透了概率统计思想。
学情分析:
学生以前学过求一个数是另一个数的几分之几的分数应用题,学习本节知识时只要引导学生发现百分数应用题与分数应用题分析过程一致的地方,即明确以谁作单位1,确定了谁和谁比,根据求一个数是另一个数的几分之几的解答方法,仍用除法计算,只是结果要化成百分数。
教学目标:
1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百
分率的含义。
2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数
的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。
3、培养学生的知识迁移能力和数学的应用意识。
教学重点:解答求一个数是另一个数的百分之几的的百分之几的应用题。
教学难点:对一些百分率的理解。
教具准备小黑板、口算卡片
参考的有关数据:
稻谷出米率约72%小麦出粉率约85%棉子出油率约14%花生仁出油率约40%油菜子出油率约38%芝麻出油率约45%蓖麻子出油率约45%
教学过程
第一课时
活动(一)创设情境,提出问题:补充(点评)
1、口算比赛:(时间:1分钟)
5/6―1/23/102/91―1/44/51/54/54/3
5/8+3/47/124/77/8+1/41/5+1/33/45
想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占
总题数的几分之几?)
2、学生根据自己的口算情况口答做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?
3、提出问题:能否将做对的题数占总题数的几分之几的分数应用题改成一道百分数应用题呢?补充(点评)
(将做对的题数占总题数的几分之几改成做对的题
教学设计
校对并让学生说说自己的口算情况,
补充(点评)、
数占总题数的百分之几)
活动(二)相互合作,探究问题:
(一)初步感知
1、学生尝试解答各自的做对的题数占总题数的百分之几和做错的题数占总题数的百分之几的问题。
2、小结:求一个数是另一个数的百分之几的百分数应用题与求一个数是另一个数的几分之几的分数应用题解法相同,关键是找准单位1,所不同的是,求一个数是另一个数的百分之几的百分数应用题计算的结果要化成百分数。
(二)共同探讨
1、师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自做对的题数占总题数的百分之几这是你在这次口算比赛中的正确率,做错的题数占总题数的百分之几就是错误率。像这些正确率、错误率等我们通常称作百分率。你能举一些我们日常生活中的百分率的例子吗?
2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
合格的产品数发芽的个数
产品的合格率=────────100%发芽率=───────100%
产品总数种子的总数
3、尝试解答例题:
(1)出示课本例1和例2的条件:
例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人,?
例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。?
(2)完成第113页的做一做
活动(三)运用知识,解决问题:
1、口答:
(1)2是5的百分之几?5是2的百分之几?
(2)用1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。
2、判断:
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。
(3)25克盐放入100克水中,盐水的含盐率是25%。
3、课堂作业:
1、我国鸟类种数繁多,约有1166种。全世界鸟类约有
8590种。?
2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。补充(点评)
活动(四)、全课总结
1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?
2、学生谈谈今天所学的知识在我们的日常生活中有什么用?
课堂总结
学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。
一、补充练习:
1、判断题
①五年级98个同学,全部达到体育锻炼标准,达标率为98%.
②今天一车间102个工人全部上班,今天的出勤率是102%
③甲工人加工103个零件,有100个合格,合格率是100%.
2、应用题
①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率.
②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率.
二、作业:结合练习二十九第6题进行课外调查。
分数的解决问题教案 篇2
【教学内容】
《义务教育课程标准实验教科书数学》六年级上册第85页例1及练习二十一第1~4题。
【教学目标】
1.认识一些常用的百分率,理解它们表示的具体意义。
2.掌握求一个数是另一个数的百分之几的问题的解答方法。
3.感受百分率在生活实际中的应用价值,提高学生分析、解决问题的能力。
【教学重、难点】
掌握求一些常用的百分率的方法。
【教具准备】
课件(或挂图)。
【教学过程】
一、复习准备
出示信息:西大街小学六(1)班有40人,其中男生有24人,女生有16人。
问题:六(1)班男生是全班人数的几分之几?女生是全班人数的几分之几?
学生独立解答,交流解题思路,总结求一个数是另一个数的几分之几用除法解决,关键是先弄清谁和谁相比,谁是单位1。
二、学习新课
1.把复习准备的问题改成:六(1)班男生是全班人数的百分之几?女生是全班人数的百分之几?
(1)学生尝试解决。
(2)让学生交流解决思路,比较改动后的问题与复习中的问题的相同之处和不同之处。
引导学生由相同之处再次深化数量关系和解题思路,明确还是分别用男生人数总人数和女生人数总人数来解答,由不同之处可得知结果要化成百分数。
从而共同揭示出:解决百分数的问题可以依照解决分数问题的方法。求一个数是另一个数的百分之几用除法解决。关键是先弄清谁和谁相比,谁是单位1。
2.学习例1。
出示课件:学生在操场上进行体育测试的情景。
出示两条信息:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。
小精灵提出一个问题:六年级学生的达标率是多少?
(1)师:对于小精灵给我们带来的这个问题,同学们有什么疑问呢?
可以简单介绍《国家体育锻炼标准》的有关内容,重点解释:达标率是指达标学生的人数占学生总人数的百分之几。(可根据学生已有知识经验,采取生与生、生与师的对话方式)
(2)学生独立解答,再在小组内交流解题思路,让学生总结求达标率的计算公式。
(3)全班交流达标率的计算公式,阅读课本第85页,看看书上的公式与自己总结的有什么不同。讨论:书上的计算公式为什么要乘100%?对此,你有何看法?
3.学习例2。
(1)先让学生观察统计表,你看懂了什么?有什么疑问?(重点理解发芽率的含义)
(2)学生独立列式计算,完成统计表。
(3)分组交流讨论,概括求发芽率的计算公式。
(4)让学生观察填写完整的统计表,解释绿豆的发芽率是97.5%、花生的发芽率是92%、大蒜的发芽率是95%的具体意义。根据这三个信息,你知道了什么?你对这里的同学们所做的种子发芽实验有了怎样的认识?
(5)简单介绍发芽率的应用价值。
4.认识一些常见的百分率。
(1)让学生在认识例1和例2中的达标率和发芽率的基础上,讨论:率指什么?
引导学生理解率是两个数相除的商所化成的百分数,即百分比或百分率。
(2)师指出生活中用百分率进行统计的还很多,师生共同补充常见的一些百分率的例子。
(3)课本第86页做一做的第一题
小组讨论:怎样求出我们所知道的百分率?说一说它们的含义和列出相关计算公式。(采取小组比赛的形式,比一比哪个小组列举的公式多而且合理)
(4)全班反馈交流。
5.深化理解百分率的意义。
(1)课件出示例1的信息:六年级学生的达标率是75%。用1个圆表示六年级学生的总人数。让学生思考如何在图上表示达标率是75%。课件显示这个圆的75%的部分涂上红色。
(2)这个圆的红色部分表示六年级学生的达标率是75%,那么剩下的部分表示什么?引导学生发现剩下的部分表示未达标率是25%。
(3)达标率和未达标率这一组百分率有什么关系?
引导学生发现达标率+未达标率=1,理解只要知道了其中的一个百分率,就能根据它们的关系求出另一个百分率。
(4)你们还能列举出象这样的一组百分率吗?
(5)根据以上的学习,讨论百分率一定小于100%这句话对吗?可让学生根据百分率的意义及一些实例来进行辩论。
(6)讨论:结合具体实例说一说哪些百分率不可能超过100%?哪些可能超过100%?说明了什么?
三、巩固练习
1.课本第86页做一做的第2题。
2.练习二十的第1题。
四、布置作业
课堂作业:练习二十的第2、3、4题。
课外作业:调查一些常见的百分率(课堂上没有涉及的),弄清它们的含义以及计算公式。
五、课堂总结及反思
1.学了这节课你还有什么疑问呢?
2.能谈谈学习后的收获或者是感受吗?(作者:湖北省武汉市西大街小学彭娟)
分数的解决问题教案 篇3
教学目标:
1、使学生掌握求稍复杂的已知一个数的百分之几是多少求这个数的应用题的解题方法,并能正确地解答这类应用题。
2、感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。
教学重点:
掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。
教学难点:
正确、灵活地解答这类百分数应用题的实际问题。
教学时间:
一课时
教学过程:
一、复习
1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了《用百分数解决问题(2)》教学设计。现在图书室有多少册图书?
2、学生找出这道题目的分率句,确定单位“1”,并根据数量关系列式:1400×(1+《用百分数解决问题(2)》教学设计)
二、新授
1、教学例3
(1)出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
(2)学生读题,找条件和问题,明确这道题是把谁看成单位“1”。
(3)引导思考:从“今年图书册数增加了12%”这句话中,你能知道些什么?
①今年图书增加的部分是原有的12%。
②今年图书的册数是原有的120%。
(4)学生讨论后分小组交流,并独立列式计算:
第一种:1400×12%=168(册)
1400+168=1568(册)
第二种:1400×(1+12%)
=1400×112%
=168(册)
2、通过这道题的学习,你明白了什么?(求一个数的.几分之几和求一个数的百分之几,都要用乘法计算)
3、巩固练习:完成P93“做一做”第1题。
三、练习
1、补充练习
(1)出示练习:
①油菜子的出油率是42%。2100千克油菜子可榨油多少千克?
②油菜子的出油率是42%。一个榨油厂榨出油菜子2100千克,用油菜子多少千克?
(2)分析理解:
A、出油率是什么意思?这两道题有什么相同和不同?
B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?
(3)学生独立列式解答。
2、学生做教科书练习二十二的第1、3、4题。
分数的解决问题教案 篇4
【教学目标】
1.使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百分率的含义。
2.能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。
3.培养学生的知识迁移能力和数学的应用意识。
【重点难点】
1.解答求一个数是另一个数的百分之几的的百分之几的应用题。
2.对一些百分率的理解。
【教具准备】
小黑板、口算卡片。
【参考的有关数据】
稻谷出米率约72% 小麦出粉率约85% 棉子出油率约14%花生仁出油率约40% 油菜子出油率约38% 芝麻出油率约45% 蓖麻子出油率约45%
【教学过程】
第1课时
活动(一)创设情境,提出问题
1.口算比赛:(时间:1分钟)
5/6―1/2 3/10×2/9 1―1/4 4/5÷1/5 4/5÷4/3
5/8+3/4 7/12×4/7 7/8+1/4 1/5+1/3 3/4÷5
想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?)
2.学生根据自己的口算情况口答“做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?”
3.提出问题:能否将“做对的题数占总题数的几分之几”的分数应用题改成一道百分数应用题呢?
(校对并让学生说说自己的口算情况,错题数占总题数的百分之几”)
活动(二)相互合作,探究问题
初步感知
1.学生尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。
2.小结:“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。
共同探讨
1.师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自“做对的题数占总题数的百分之几”这是你在这次口算比赛中的正确率,“做错的题数占总题数的百分之几”就是错误率。像这些正确率、错误率等我们通常称作“百分率”。你能举一些我们日常生活中的百分率的例子吗?
2.学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
合格的产品数 发芽的个数
产品的合格率= ────────×100% 发芽率= ───────×100%
产品总数 种子的总数
3.尝试解答例题:
(1)出示课本例1和例2的条件:
例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人, ?
例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。 ?
(2)完成第113页的“做一做”
活动(三)运用知识,解决问题
1.口答:
(1)2是5的百分之几?5是2的百分之几?
(2)用 1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。
2.判断:
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。
(3)25克盐放入100克水中,盐水的含盐率是25%。
3.课堂作业:
1.我国鸟类种数繁多,约有1166种。全世界鸟类约有8590种。 ?
2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。
活动(四)全课总结
1.学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?
2.学生谈谈今天所学的知识在我们的日常生活中有什么用?
活动(五)补充练习
1.判断题。
①五年级98个同学,全部达到体育锻炼标准,达标率为98%。
②今天一车间102个工人全部上班,今天的出勤率是102%。
③甲工人加工103个零件,有100个合格,合格率是100%。
2.应用题。
①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率。
②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率。
3.作业:结合练习二十九第6题进行课外调查。
【教学反思】
创造性地使用了教材,使乏味的数学变得生动,鲜活,有意义。。注重了学习方式的多样化,密切了数学与生活的联系。学习效果很好。
分数的解决问题教案 篇5
教学目标
1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百分率的含义。
2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。
3、培养学生的知识迁移能力和数学的应用意识。
教学重难点
解答求一个数是另一个数的百分之几的的百分之几的应用题。
教学工具
课件
教学过程
一、复习旧知:
1、某乡去年原计划造林12公顷,实际造林14公顷,实际造林是原计划的百分之几?
指名学生回答。
2、某乡去年原计划造林12公顷,实际造林14公顷,实际造林比原计划增加了百分之几?
指名学生回答。
二、相互合作,探究问题:
(一)初步感知
1、学生尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。
2、小结:“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。
(二)共同探讨
1、百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自“做对的题数占总题数的百分之几”这是你在这次口算比赛中的正确率,“做错的题数占总题数的百分之几”就是错误率。像这些正确率、错误率等我们通常称作“百分率”你能举一些我们日常生活中的百分率的例子吗?
2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
3、尝试解答例题:
(1)出示课本例1(1)的条件:
例1:六年级有学生160人,已达到《国家体育锻炼标准》的有120人?
(2)学生提出问题,尝试解答
三、运用知识,解决问题:
1、P86的“做一做”第1、2题
2、练习二十的第2题
四、全课总结
1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?
2、学生谈谈今天所学的知识在我们的日常生活中有什么用?
课堂总结
学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。
五、作业:
练习二十的第3、4题。
课后习题
练习二十的第3、4题。
分数的解决问题教案 篇6
教学内容:教科书第39页的例2.
教学目标:
1.学习运用线段图帮助分析数量关系。
2.学习列出方程,解决已知一个数的几分之几是多少,求这个数的实际问题。
3.在分析数量关系,列出方程解决实际问题的过程中,提高分析问题、解决的能力。
教学过程:
一、复习与准备
1.根据题意,看图写出代数式。
(1)苹果有xkg,西瓜的质量比苹果重1/4.
西瓜比苹果重()kg,西瓜重()kg。
(2)鸡有x只,鸭的只数比鸡少1/3.
鸭比鸡少()只,鸭有()只。
2.根据题意列出方程。
(1)六(1)班有15人参加了合唱队,占全班人数的1/3,六(1)班有多少人?
(2)美术小组的人数比航模小组多1/4,美术组的人数比航模组多5人。航模组有多少人?
二、教学例2
出示例2.
1.审题。
(1)看例题的插图,理解题目的意思。
复述题意,说说知道了什么,要求什么。
(2)分析题意,说说你对鈥溍朗跣∽榈娜耸群侥P∽槎?/4鈥澱庖惶跫睦斫狻?/p>
(航模小组人数看作单位鈥?鈥潱朗跣∽榈娜耸啵嗟娜耸嗟庇诤侥P∽?等份中的1份。)
(3)理解数量关系,让学生自己试着画图表示两个小组的人数关系。(学生可以选用条形、线段或其他图形表示人数)
2.分析、解答。
(1)出示线段图。
(2)说说数量关系。
根据已知条件鈥溍朗跣∽榈娜耸群侥P∽槎?/4鈥澲苯拥贸鍪抗叵担?/p>
航模小组的人数+美术小组比航模小组多的人数=美术小组的人数
或者:航模小组的人数+航模小组的人数脳1/4=美术小组的人数
(3)学生根据得到的数量关系列方程解答。
(4)交流各自的解法。
(5)阅读课本,完成课本上的填空。
3.改变例2.
出示:航模小组有20人,美术组的人数比航模小组多1/4,美术小组有多少人?
(1)根据题意改变线段图。(只要改变已知数与未知数的位置)
(2)根据图意解答。
(3)启发学生与例2进行比较,说说你发现什么?
(数量关系相同,已知条件与未知问题交换后,仍然可以根据例2的数量关系列式)
教师:上面用方程解例2的思路与分数乘法问题的思路统一,我们应该好好理解、掌握它。
4.再次改变例2.
出示:美术小组有24人,美术小组的人数比航模小组少14,航模小组有多少人?
(1)根据题意改变线段图。
(2)改变方程,解方程。
5.小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。
(三)运用新知,解决问题
1.看图口头编实际问题。
(1)
(2)
2.根据条件列方程。
(1)小红买了一本书和一枝钢笔,书的价格是10元,正好比钢笔价格少3/8,钢笔的价格是多少元?
(2)白兔的只数比黑兔多2/3,白兔有450只,黑兔有多少只?
(3)白兔的只数比黑兔多2/3,白兔比黑兔多180只,黑兔有多少只?
3.根据所给方程口头编实际问题。(小组内交流)
四、全课总结(略)
分数的解决问题教案 篇7
在教学中,充分挖掘学生的思维,数与形结合将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利、高效地学好这一部分知识,更有利于学生兴趣的培养、智力的开发、能力的.提高。让学生能够根据条件先找关键句,如:水分占体重的几分之几,确定单位“1”的量;自己画出线段图,在图中标出已知和未知的数量;接着根据图中的已知的、未知的量找出数量间相等的关系是:体重×水分占体重的几分之几=体内水分的重量;根据数量关系列出方程;方法归纳为:(1)画线段图, 不仅让学生自己动手画一画,还让学生说说线段图的意思,即加深学生对题的理解,又提高了学生分析能力;(2)找等量关系式,由于在学习分数乘法时,学生已经掌握了找等量关系式的方法,所以学生不仅能很快找出题中的等量关系式,还能根据第一个等量关系式写出另一个等量关系式;(3)解决问题,通过老师的鼓励与引导,学生能从不同角度分析问题,运用多种方法解决问题,拓展了学生的思维能力。如果不用列方程解,还可以怎样计算?水分的重量和水分占体重的几分之几是已知的,体重是未知的。根据分数除法的意义,已知积和一个因数,求另一个因数可以直接用除法计算。然后要求学生用算术方法来解答例1。做完后,让学生对算术解法和方程解法进形比较。它们都是根据数量的相等关系来列式的。算术法是按照除法的意义直接列出除法算式来解答的;方程解法是先设未知数,然后按照数量的相等关系列方程来解答的。这节课,学生们的思路都打开了,课堂的积极性明显高,从课后作业情况看,学习效果比较满意。
分数的解决问题教案 篇8
1、30占40的百分之几?
2、40是50的百分之几?
3、80比50多百分之几?
4、15比20少百分之几?
四、你知道吗?
1、出勤率=( )×100%
2、合格率=( )×100%
3、出粉率=( )×100%
4、优秀率=( )×100%
5、达标率=( )×100%
1、六一班有学生50人,某一天出勤人数是48人,求这天的出勤率。
_____________________________________
2、在500克水中加入50克盐,求盐水的含盐率。
_____________________________________
3、东村去年计划造林12公顷,实际造林14公顷,实际比计划造林增加百分之几?
_____________________________________
4、南村小学原来每月用水180吨,开展节约活动后,现在每月用水160吨,节约了百分之几?
_____________________________________
5、妈妈把50000元存入银行,定期3年,年利率是3.5%,到期时妈妈可取回多少元?
_____________________________________
6、一套服装现价480元,比原来降低25%,原来这套服装多少元?
_____________________________________
分数的解决问题教案 篇9
教材分析:
这部分内容是在学生学过分数应用题的解答和百分数的意义、百分数和分数、小数的互化的基础上进行教学的。这部分内容主要教学求一个数是另一个数的百分之几的应用题。这种应用题与求一个数是另一个数的几分之几的应用题相同,但程度上有所加深。这是因为,分数和百分数都可以表示两个数的比。所以,百分数应用题的解题思路和方法与分数应用题大致相同。解答百分数应用题,既可以加深对百分数的认识,又加强了知识间的联系。为了加强百分数的应用,教材还在例2之后列举了小麦的出粉率、产品的合格率、职工的出勤率等几个工农业生产和统计工作中经常用到的计算公式,并让学生说说还有哪些求百分数的例子。这样既扩大了学生所学的知识范围,又能通过练习加深对百分数的认识,同时也渗透了概率统计思想。
学情分析:
学生以前学过求一个数是另一个数的几分之几的分数应用题,学习本节知识时只要引导学生发现百分数应用题与分数应用题分析过程一致的地方,即明确以谁作单位1,确定了谁和谁比,根据求一个数是另一个数的几分之几的解答方法,仍用除法计算,只是结果要化成百分数。
教学目标:
1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百
分率的含义。
2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数
的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。
3、培养学生的知识迁移能力和数学的应用意识。
教学重点:解答求一个数是另一个数的百分之几的的百分之几的应用题。
教学难点:对一些百分率的理解。
教具准备小黑板、口算卡片
参考的有关数据:
稻谷出米率约72%小麦出粉率约85%棉子出油率约14%花生仁出油率约40%油菜子出油率约38%芝麻出油率约45%蓖麻子出油率约45%
教学过程
教学设计补充(点评)
分数的解决问题教案 篇10
一、说教材:
1、教学内容:
用百分数解决问题,是九年义务教育小学数学六年级上册的内容,本课时要教学第93页例3,并进行相关的训练。这是在学过小数、分数、百分数的互化,及一般分数应用题解答方法的基础上,所进行的更深入的拓展应用性学习,可以看作是前段落分数应用题教学的巩固与深化,也可以视为体现数学教学学以致用的重要环节。其内容与实际生活比较切近学也比较容易接受。
2、教学目标:
作为基础性的自然学科,小学数学在一堂课的教学中,必须努力完成知识传导、能力培养、情感激励及其习惯养成等任务。根据教材和学生实际,我设定了如下内容的三维目标:
(1)知识技能目标:使学生理解和掌握百分数应用题的类型之一——“求一个数的百分之几是多少的应用题”的基本题型特点、解题思路和运算方法,培养学生自主探究、合作交流、概括总结、实践应用等多种技能。
(2)过程方法目标:教为主导,充分体现教师组织、点拨、合作的角色定位;学为主体,突出培养学生运用已学小数、分数、百分数互化,及一般分数应用题的解题方法,温故而知新从而探索新规律获得新知识的能力;
(3)情感态度目标:着眼非智力因素培养,使学生感悟到真知来自于生产和生活的实践,学以致用之中有无穷的快乐,从而焕发学生探索规律、获取新知识的热情和兴趣。
3、重点难点:
一堂课教学重点的设定,应依据教学内容的实际,根据教学目标的要求,本着突破基本环节的原则设定。作为一种应用类型的例题教学及其训练课,本节课教学的重点应是:掌握“求一个数的百分之几是多少的应用题”的解答思路和运算方法。
而教学难点的设定,则要从“教材”与“学生”两相关联的角度,主要考虑学生“学”的实际来确定,据此本节课的教学难点应是:帮助学生把握此类应用题“类”的特点,引导学生找出该类习题中的等量关系。
二、说教法:
本节课教学获得成效的关键,是在引导学生自如地应用旧知识,探索解决新问题的途径和方法。按照由已知到未知的总体教学思路,拟分环节采用如下教学方法:
1、铺垫孕伏法:通过对旧知识的复习回顾,既让学生重温分数、百分数、小数互化的方法,又为后边教学新课,由“一般分数应用题”到“百分数应用题”,设置类比、迁移的情景。
2、分析讲授法:教者出示例题后,参照一般分数应用题的解答方法,引导学生分析题意,明确已知、未知数量及其问题,揭示其中等量关系,列算式分步运算并答题。
3、归纳总结法:在讲授例题、直观演示的基础上,引导学生从“例子”中“得法”,参照以前所学“一般分数应用题”解法,梳理总结“百分数应用题”解答思路及步骤。
4、练习巩固法:在讲解例题,并引导学生总结、从“例子”中得法的基础上,教者及时出举相关同类型基本题目,及其较有难度的变式题目,组织学生及时练习巩固。
三、说学法:
注重学法指导是新课改的基本要求,也是有效提高数学教学实效的根本途径,为此在本节课的教学中,我拟努力落实学法指导,在整个教学过程中积极引导学生参与,使学生在获得知识的同时,获得学习方法、养成习惯,并激发学习兴趣。具体说来,主要引导学生采用以下学法:
1、温故知新法:在复习提问、口答运算、读题列式,做铺垫式练习的基础上,拓展引申出新问题,展示问题情景,引导学生自然而然地发现新思路、获得新知识。
2、自主尝试法:在例题讲解之前,留一定的时间让学生作尝试式解答。在例题讲解之后,及时让学生进入自我独立解答实践。在总结归纳时,也能多给学生机会。
3、合作探究法:组织小组合作学习,在观察归纳发现等活动中,注意发挥集体合作学习的威力,充分利用班级优质生源带动全班的探究和学习。
4、课堂演练法:在课堂教学的各个环节中,尽可能多安排不同形式的学生演算活动,在例题讲解完毕之后集中安排有梯度的课堂练习,组织学生当堂练习,既消化所学新知识、形成能力,又借以培养学以致用的意识。
四、说教学程序:
课堂教学程序是体现教学理念,完成教学目标的载体,本着温故知新、讲练结合、突出重点、自如拓展的基本思想,本节课我计划按照如下几个环节完成:
(一)激情引趣:这是本节课的前奏,让学生在欣赏中静心凝神,从而调动学生学习的积极性,为本节课的顺利完成创设一个温馨和谐的情景。
(二)铺垫孕伏:这既是对已学知识的复习,又是新课学习前的必要准备。
我先以发问让学生明确这一阶段学习的主要内容——“百分数”;之后又以继续发问,让学生重温百分数的意义——“表示一个数是另一个数的百分之几的数叫做百分数。”我接着指出:为了比较数量的大小,常常需要把分数、百分数、小数进行“互化”,随即出示两道互化题目,指名让学生完成口答。接下来我又出示了一组生活中常见的分数计算及应用题目,让学生分析、思考,并指名学生口头列式、上黑板演算,这样既复习旧知识,又为新授课作必要的铺垫引发。
(三)导入新课:我采用题型变换的方式完成,指出“把复习2中的分数转化成百分数,就变成我们今天学习的新内容-----“求一个数的百分之几是多少的应用题”,出示问题,导出新课,并板书课题,以问题情景引出下一环节的学习。
(四)探究新知:
1、出示例4 ,引导学生独立思考后指名板演。让学生揭示数量关系,并在自己的练习本上解答,完成后集体订正并进行评价,使每个学生都能弄通学懂。这一环节要使每位学生都参与其中,以“学会”取代“教会”,突出学生的主体作用,使学生在轻松的心理状态下获取知识,并且激活学生的求知欲。
2、与复习题2相比较,寻找相同点和不同点。在学生顺利完成例4后,及时引导学生分析比较例4和复习题2这两种类型应用题的相同点和不同点。先让学生小组合作讨论,然后指名回答,之后用课件展示比较结果------即相同点:单位“1”相同,解题思路相同。不同点:例4的第二个已知条件是用百分数表示,而复习 2第二个已知条件是用分数表示。这样安排,既突出本节课教学的重点,又拓展深化知识,同时也培养学生综合归纳、及其口头表达的能力。
3、转换问题启发学生更深入地思考、作答。将例题改编成“求比一个数少百分之几的数是多少”的应用题,引导学生解答。这是例题教学的'进一步拓展,它是在刚学过“求一个数的百分之几是多少”的应用题后,抓住学生已有经验,引导学生作更深入的思考探索。激发学生学习兴趣,又启迪学生思维的灵活性。
4、提出问题,引导学生对所学应用题解答思路、方法作总体上的归纳。让学生小组合作讨论,并指名回答之后,展示-------学习了“求一个数的百分之几是多少”。它和以前学习的“求一个数的几分之几是多少”的意义是相同的,在解答方法上也是一样的,都是用乘法来计算。在解答时要找准谁是单位“1”的量,谁是百分之几相对应的量。直接用:单位“1”的量×百分之几=百分之几相对应的量 (让学生齐读出来,加深印象。)
(四)巩固练习:做93页“做一做”(一人板演,个别辅导,后集体订正。)基本教学任务完成后,出示练习题,组织学生进行课堂练习,使当堂学习的知识及时得以应用。这样既培养学生应用新知识解决实际问题的能力,又使学生进一步感受到学以致用的意义,增强了学习数学的信心。
(五)总结评价:教者对当堂所学知识、题型特点、解答方法、注意事项等作归纳,对学生表现作出简要评价。并再次展示------学习了“求一个数的百分之几是多少”。它和以前学习的“求一个数的几分之几是多少”的意义是相同的,在解答方法上也是一样的,都是用乘法来计算。在解答时要找准谁是单位“1”的量,谁是百分之几相对应的量。直接用:
单位“1”的量×百分之几=百分之几相对应的量,让学生再次齐读加深印象。
(六)拓展延伸:通过组织有难度、有梯度的拔高练习,在分析解答过程中,培养学生一题多解的意识,培养学生发散性思维的能力。
(七)作业布置:布置课本练习二十二第2.4题,要求学生课外完成
分数的解决问题教案 篇11
教材分析:
这部分内容是求一个数是另一个数的百分之几的应用题的发展。它是在求比一个数多(少)几分之几的分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。
学情分析:
用线段图表示题目的数量关系有助于学生理解题意,分析数量关系。再通过想帮助学生弄清,要求实际造林比原计划多百分之几,就是求多造林的公顷数是原计划造林公顷数的百分之几。然后鼓励学生寻找不同的解决方法,这样既开拓了学生的解题思路,又可以发展学生的思维能力。不断的改变题中的问题,使学生进一步加深对这类百分数应用题的认识,看到题里条件和问题之间的内在联系,同时也促进了学生逻辑思维能力的发展。
教学目标:
1、认识求比一个数多(少)百分之几的应用题的结构特点。
2、理解和掌握这类应用题的数量关系、解题思路和解题方法。
教学重点:掌握求比一个数多(少)百分之几的应用题的解题方法,正确解答。
教学难点:理解这类应用题的数量关系、解题思路和解题方法。
教具准备
小黑板
教学过程
教学设计补充(点评)
分数的解决问题教案 篇12
(一)复习
1、教师引导学生看复习题(1)学校图书室原有图书1400册,今年图书册数增加了168册,现在图书室有多少册图书?
2、学生口答
3、引导学生看复习题(2)校图书室原有图书1400册,今年图书册数增加了。现在图书室有多少册图书?
教师出示不同答案a、1400+ b、1400+1400× c、1400× d、1400×(1+ )
4、教师先引导学生小组讨论选择正确答案
指名汇报并说明原因
5、教师谈话导入新课
如果将这道题的条件变为“今年图书册数增加了12%”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。
板书课题:比较复杂的百分数应用题
(二)学习新课
1、教学例3
学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
(1)学生默读题。
(2)学生独立完成
(3)教师巡视发现不同做法指名板演
(4)学生说解题思路
(5)教师引导学生观察比较例3与复习题3有什么异同?(两道题问题相同,条件不同。)条件不同在哪儿?
(复习题3条件中给出的数值形式是分数形式;例3中给出的数值形式是百分数形式。)
教师指出,分数与百分数的互相转化的方法,让学生回答。
2、百分数应用题和分数应用题的联系和区别?
问:同学们能说一说百分数应用题和分数应用题有什么区别吗?
问:谁做单位“1”?(让学生分别指出两道题中的单位“1”),用什么方法解答。(乘法)
问:怎样列式表达?(比较)
问:结果如何?
教师和学生一起总结。
教师板书:相同点:数量关系和解题方法完全相同。
不同点:百分数应用题的数量关系用百分数来表示;分数应用题的.数量关系用分数来表示。
3。做一做第1题。
龙泉镇去年有小生2800人,今年比去年减少了0。5%。今年有小学生多少人?
在例3中已经学习了求比一个数多百分之几的数是多少,本题中学习求比一个数少百分之几的数是多少的问题。
学生先独立解答。再小组交流、讨论
(1)教师巡视,适时引导。先确定数量关系,再列式解答。
2800—2800×0。5%
=2800-14
=2786(人)
或
2800×(1—0。5%)
=2800×99。5%
=2786(人)
答:今年有小学生2786人。
(2)指名说解题思路。
问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)
(三)课堂总结
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了比一个数多(或少)百分之几是多少的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
百分数应用题和分数应用题的思路和方法是一样的,只不过表示形式不一样而已。
(四)巩固反馈
练习二十二第4题、9。
分数的解决问题教案 篇13
教材分析:
这部分内容是求一个数是另一个数的百分之几的应用题的发展。它是在求比一个数多(少)几分之几的分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。
学情分析:
用线段图表示题目的数量关系有助于学生理解题意,分析数量关系。再通过想帮助学生弄清,要求实际造林比原计划多百分之几,就是求多造林的公顷数是原计划造林公顷数的百分之几。然后鼓励学生寻找不同的解决方法,这样既开拓了学生的解题思路,又可以发展学生的思维能力。不断的改变题中的问题,使学生进一步加深对这类百分数应用题的认识,看到题里条件和问题之间的内在联系,同时也促进了学生逻辑思维能力的发展。
教学目标:
1、认识求比一个数多(少)百分之几的应用题的结构特点。
2、理解和掌握这类应用题的数量关系、解题思路和解题方法。
教学重点:掌握求比一个数多(少)百分之几的应用题的解题方法,正确解答。
教学难点:理解这类应用题的数量关系、解题思路和解题方法。
教具准备
小黑板
教学过程
教学设计补充(点评)
第一课时
活动(一)铺垫复习。
1、说出下面各题中表示单位1的量,并列出数量关系式。
(1)男生人数占总人数的百分之几?
(2)故事书的本数相当于连环画本数的百分之几?
(3)实际产量是计划产量的百分之几?
(4)水稻播种的公顷数是小麦的百分之几?
2、只列式,不计算。
(1)140吨是60吨的百分之几?
(2)260吨是40吨的百分之几?
3、一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
活动(二)相互合作,探究问题:
1、根据复习题第3题的题意,除了可以求实际造林是原计划的百分之几?还可以提什么问题?出示例3。一个乡去年原计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
2、讨论:
(1)这道题与上面的复习题相比较,相同的地方是什么?不同的地方是什么?
(2)根据线段图,这道题应该怎样思考、解答?
列式解答:
(14-12)12=2120.167=16.7%
答:实际造林比原计划多16.7%。
3、学生阅读课本,对照例3的解答,质疑问难。
4、想一想,例3还有其他解法吗?
可能出现1412-100%116.7%-100%=16.7%
5、思考:如果例3中的问题改成:原计划造林比实际造林少百分之几?该怎样解答?
(例3中的问题改成原计划造林比实际造林少百分之几后,单位1的量发生变化。改编后的应用题应把实际造林的公顷数(14公顷)看做单位1的量,要比较的量是原计划造林比实际造林少的公顷数。)
解答过程:
(14-12)14或者:1-1214
=2141-0.857
0.143=1-85.7%
=14.3%=14.3%
答:原计划造林比实际造林少14.3%。
活动(三)、巩固练习
1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位1。
(1)今年比去年增产百分之几?
(2)男生比女生少百分之几?
(3)一种商品,降价了百分之几?
(4)客车速度比货车慢百分之几?
(5)货车速度比客车快百分之几?
2、判断题。(对的在括号里打,错的打。)
(1)客车每秒行的路程比货车多1.2米,那么,货车每秒行的路程比客车少1.2米。()
(2)客车每秒行的路程比货车多10%,那么,货车每秒行的路程比客车少10%。()
板书:
分数的解决问题教案 篇14
教学过程:
一、复习与准备
1.根据题意,看图写出代数式。
(1)苹果有xkg,西瓜的质量比苹果重1/4。
西瓜比苹果重()kg,西瓜重()kg。
(2)鸡有x只,鸭的只数比鸡少1/3。
鸭比鸡少()只,鸭有()只。
2.根据题意列出方程。
(1)六(1)班有15人参加了合唱队,占全班人数的1/3,六(1)班有多少人?
(2)美术小组的人数比航模小组多1/4,美术组的人数比航模组多5人。航模组有多少人?
二、教学例2
出示例2。
1.审题。
(1)看例题的插图,理解题目的意思。
复述题意,说说知道了什么,要求什么。
(2)分析题意,说说你对美术小组的人数比航模小组多1/4这一条件的理解。
(航模小组人数看作单位1,美术小组的人数多,多的人数相当于航模小组4等份中的1份。)
(3)理解数量关系,让学生自己试着画图表示两个小组的人数关系。(学生可以选用条形、线段或其他图形表示人数)
2.分析、解答。
(1)出示线段图。
(2)说说数量关系。
根据已知条件美术小组的人数比航模小组多1/4直接得出数量关系:
航模小组的人数+美术小组比航模小组多的人数=美术小组的人数
或者:航模小组的人数+航模小组的人数1/4=美术小组的人数
(3)学生根据得到的数量关系列方程解答。
(4)交流各自的解法。
(5)阅读课本,完成课本上的填空。
3.改变例2。
出示:航模小组有20人,美术组的人数比航模小组多1/4,美术小组有多少人?
(1)根据题意改变线段图。(只要改变已知数与未知数的位置)
(2)根据图意解答。
(3)启发学生与例2进行比较,说说你发现什么?
(数量关系相同,已知条件与未知问题交换后,仍然可以根据例2的数量关系列式)
教师:上面用方程解例2的思路与分数乘法问题的思路统一,我们应该好好理解、掌握它。
4.再次改变例2。
出示:美术小组有24人,美术小组的人数比航模小组少14,航模小组有多少人?
(1)根据题意改变线段图。
(2)改变方程,解方程。
5.小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。
(三)运用新知,解决问题
1.看图口头编实际问题。
(1)
(2)
2.根据条件列方程。
(1)小红买了一本书和一枝钢笔,书的价格是10元,正好比钢笔价格少3/8,钢笔的价格是多少元?
(2)白兔的只数比黑兔多2/3,白兔有450只,黑兔有多少只?
(3)白兔的只数比黑兔多2/3,白兔比黑兔多180只,黑兔有多少只?
3.根据所给方程口头编实际问题。(小组内交流)
四、全课总结(略)
教学内容:教科书第39页的例2。
教学目标:
1.学习运用线段图帮助分析数量关系。
2.学习列出方程,解决已知一个数的几分之几是多少,求这个数的实际问题。
3.在分析数量关系,列出方程解决实际问题的过程中,提高分析问题、解决的能力。
分数的解决问题教案 篇15
教学目标:
1、掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。
2、提高学生迁移类推和分析、解决问题的能力。
教学重点:
掌握解决此类问题的方法。
教学难点:
理解题中的数量关系。
教学过程:
一、复习
1、把下面各数化成百分数。
0.631.0870.044
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位1)
(1)某种学生的出油率是36%。
(2)实际用电量占计划用电量的80%。
(3)李家今年荔枝产量是去年的120%。
二、新授
1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
(1)计划造林是实际造林的百分之几?
(2)实际造林是计划造林的百分之几?
(3)实际造林比计划造林增加百分之几?
(4)计划早林比实际造林少百分之几?
2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位1,哪一个数与单位1相比。
3、学生自主解决实际早林比计划增加了百分之几的问题。
(1)分析数量关系,让学生自己尝试着用线段图表示出来。
(2)让学生说说是怎样理解实际造林比原计划增加百分之几的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位1。)
(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。
方法一:(14-12)12=2120.167=16.7%
方法二:14121.167=116.7%116.7%-100%=16.7%
(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位1,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。
(5)改变问题:问题如果是计划造林比实际造林少百分之几?,该怎么解决呢?
学生列出算式:(14-12)14
(再次强调两个问题中谁和谁比,谁是单位1。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位1。)
三、巩固练习
1、独立完成课本第90页做一做的题目。
2、练习二十二第1、2题。
四、布置作业
分数的意义教案13篇
每个老师都需要准备一份完整的教学课件,在每一堂课上使用。制作好教案课件是教师每天必做的事情。一份完整的教案可以促进教师创新和探索精神的发展。那么,怎样的教案才算是好的课件呢?编辑为您编辑了一些关于"分数的意义教案"的精心内容,我们会不断更新,请您收藏并关注本站!
分数的意义教案【篇1】
教学内容:分数的意义、分子、分母、分数单位
教学要求:
1、使学生理解掌握分数、分子、分母的意义和分数单位,进一步学会读写分数。
2、通过分数意义的教学,培养学生分析、综合、抽象、概括能力。
教学重点:单位1和分数单位
教学准备:电脑软件、实物投影仪、正方形纸、围棋子若干
教学过程:
一、复习引进
1、出示分数,它们是什么数?
同学们在三年级时已初步认识了分数,那么分数是怎么产生的呢?
(1)把一个苹果平均分给两个同学,每人得多少?
(2)请两组同学量一量课桌的宽是多少厘米?
(3)请一位同学量一量数学书的长是多少厘米?
(得到的结果都不是整数)
在实际生产和生活中,人们在测量和计算时,往往不能得到整数的结果,这时就需要用一种新的数─分数来表示,这样就产生了分数。
什么是分数?分数的意义是什么呢?这就是我们这节课要学习的内容。
出示课题:分数的意义
二、理解概念:
1、理解单位1的概念
(1)出示一块蛋糕:它可以用1来表示。
(2)出示一个正方形:它可以用1来表示吗?为什么?
(3)出示一条线段:它可以用1表示吗?为什么?
小结:一块蛋糕,一个正方形,一条线段都是一个物体,都可以用1表示。
(4)出示四个苹果:这是几个苹果?可以用1表示吗?为什么?
用圆圈把四个苹果圈起:现在可以用1来表示这些苹果吗?为什么?
(5)把这6只熊猫看作一个整体,用1来表示行吗?为什么?
(6)我们全班同学可以用1表示吗?为什么?一组同学呢?
(7)你能举出一些把许多物体看作一个整体,用1来表示的例子吗?
小结:1不仅表示一个物体,一个图形,一个计量单位,也可以表示由许多物体组成的一个整体。这个1很特殊,我们给它加上引号,把它称为单位1。
说说你是怎么理解单位1的?能举出例子吗?
2、理解分数意义:
(1)把这块蛋糕平均分成2份,每份是它的几分之几?
(2)把正方形纸平均折成4份,并用阴影部分表示出它的三份,用分数表示是多少?
(3)
这条线段怎么表示它的呢?这一段是几分之几?有几个这样的?
(4)把这些苹果平均分成4份,每份是几只苹果?每份是整体的几分之几?把什么看成单位1?
(5)把4个苹果看成一个整体,还可以平均分成多少份?每份是这个整体的几分之几?
(6)把6只熊猫来平均分,有几种分法?同桌讨论一下,并告诉大家,你分的每一份占整体的几分之几?每份是几只熊猫?
(7)每人拿出围棋子8颗,把它平均分,你想怎么分?
请大家观察,刚才这些分数都是怎么得到的?能自己概括出分数的意义吗?
小结:把单位1平均分成若干份,表示这样的一份或者几份的数,叫做分数。
练习:练习十八13
3、理解分子、分母的意义:
说说这个分数表示什么意义?请你回忆一下分数各部分的名称。
3分子
分数线
5分母
分母5表示什么意义?看到分母你就知道什么?分子3呢?
小结:在分数里表示把1平均分成多少份的数叫分母,表示取了多少份的数叫分子。
4、理解分数单位的意义:
自然数有单位,每个自然数都是由若干个1组成的,因此自然数的.单位是几?分数也是由若干个分数单位组成的,所以分数也有分数单位,比如:是由3个组成,就是它的分数单位,的分数单位是,想一想,的分数单位是几?为什么?的分数单位呢?
你能概括一下分数单位的意义吗?
小结:在分数里,把单位1平均分成若干份,表示其中的一份的数,叫做分数单位。
练习:
读出下面的分数,并说出每个分数的分数单位。
5、学习用直线上的点表示分数:
分数可以用直线上的点来表示。
直线上相应的这一点应该用几分之几来表示?
这一点用来表示,为什么?这一点用来表示,为什么?同样都是把单位1平均分,为什么两个分数的分数单位不相同?
三、看书质疑:
今天学习的是课本p84p86的内容,请把p86的做一做练习一下,看看有什么不理解的地方,提出来,我们大家一起讨论、解决。
四、综合练习:
(一)判断:
1、把单位1分成若干份,表示这样的一份或几份的数,叫做分数。
2、把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。
(二)口答:
1、把一条2米长的绳子平均分成5份,把什么看作单位1?每份占全长的几分之几?
2、把12支铅笔平均分成4份,把什么看作一个整体?3份占这个整体的几分之几?
(三)说出下面各题把什么看作1?各题中的分数各表示什么意义?
1、男生人数占全班人数的
2、一袋大米,吃了它的
3、一本书30页,小华已看了总数的
(四)填空:
5个是()是()个
是3个()()个是是()个()
(五)说出下列各分数的意义、分数单位、各有几个这样的分数单位?
(六)下图中阴影部分各占全图的几分之几?(备用)
五、作业:
分数的意义教案【篇2】
教学内容:
教材第76~77页的练习与应用第8—13题。“探索与实践”第14—16题,“评价与反思”。
教学目标:
1、使学生进一步理解分数的基本性质,掌握约分、通分、比较分数大小的方法,建立合理的认知结构。
2、使学生通过探索与实践,发展数学思考与实践能力,感受数学活动的魅力。
教学重点:
进一步理解分数的基本性质,掌握约分、通分、比较分数大小的方法
教学难点:
运用所学的知识解决简单的实际问题。
教学方法:
讲练结合法
教学过程:
一、回顾与整理
这一单元,我们学习了分数的意义和性质,通过这个单元的学习,你学会了什么?
组织学生进行小组讨论:出示讨论题:
1、什么是分数的基本性质?它与整数除法中商不变的规律有什么联系?你能举例说明吗?2、约分、通分有什么区别?约分、通分的一般方法各是什么?3、你会怎样比较两个分数的`大小?学生进行讨论后,进行交流。
二、练习与应用
1、教学第8题
2、教学第9题:
先圈出最简分数,再把其余的分数约分。学生先独立完成,再指名汇报。
3、第10题
引导:前3题可直接根据小数意义,改写成小数,最后1题要根据分数与除法的关系,通过计算改写成小数。
4、第11题比较较分数的大小。
讨论:我们学习了多种分数的大小比较的方法。大家讨论交流后,教师再进行归类。
5、指导第13题
先让学生做,再让学生说出理由。
三、探索与实践
第14题各自记录后计算交流。
第15题要鼓励学生根据要求自主设计图案,再用分数和知识进行描述交流。
要通过展示学生设计的图案,让学生体验成功的乐趣,感受创造之美。
第16题游戏之前要让学生照书上的样子分别做一个转盘,游戏时要帮助理解活动的方法和规则。
要引导学生在游戏中积累比较分数大小的经验,反思比较分数大小的策略。
四、评价与反思
组织学生进行评价与反思时,可以先让学生阅读表中的评价项目,然后回忆学习每部分内容时的表现,再慎重地给五角星涂色,对自己作出公正、合理的评价。
五、作业
第12、13题
分数的意义教案【篇3】
一、课堂材料
1、教材:
九年义务教育小学数学教材第十册第四单元第一学时
2、教学目标:
(1)让学生理解单元在说、分、画、写、折、画等体验活动中,感受和理解分数的意义,培养学生的实际操作能力和抽象概括能力。
(2)在实践中培养学生收集和处理信息的能力,以及自主探索和合作学习的能力。
(3)营造相互合作、开拓进取的学习情境,培养学生的学习兴趣,渗透数学源于现实生活的理念。
3、 教学重点:树立“单位”的概念,理解分数的含义。
4、 教学难点:理解单元的概念。
二,教学方法
学生从易到难,从浅到深逐步理解事物。虽然在之前的研究中,学生对分数有了初步的了解,但为了让学生理解“单位”的概念并进一步阐明分数的意义,他们必须遵循自己的认知规律。因此,本课程坚持以学生为主体,以教师为主导的原则。采用启发、归纳、探究等教学方法,并穿插自学和实践。通过动手操作和直观演示,学生可以充分感知、比较和总结,突破由多个对象组成的整体也可以视为一个单元的困难1,逐层逐步推进,在此基础上理解分数的意义,培养学生的各种技能。
三、教学方法始终指导着
学生的学习过程,这与学习方法密不可分。在本课程的教学中,学习方法的指导贯穿于整个教学过程。
1、 教学生如何探索知识。老师为学生们提供了一些实践材料,包括8个棋子、2个糖果、10个豆子和一张熊猫的照片。学生们被要求使用这些学习工具将它们分成点,画一幅画,并以小组合作的形式将它们折叠起来。然后观察和比较它们的相同点和不同点,了解单位1不仅可以是一个物体、一个测量单位,还可以是一个由许多物体组成的整体。达到从感性认识到理性认识的升华。
2、 引导学生掌握在获取知识的同时总结事物本质的方法。经过实际操作和比较,学生们得出结论,单元“1”也可以是由许多对象组成的整体。让学生进行两次操作,认识到由于拷贝数不同,拷贝数不同,生成的分数也不同。在此基础上,进一步明确分数的含义,并进行总结:将单元1等分为几个部分,表示一份或多份的份数,称为分数。
四、教学程序
(一)展示资料,了解通过对话自然引入的分数生成让学生通过调查向大家清晰地讲述自己,让学生有一种满足感,培养学生对学习成绩的兴趣,并感受到取得成绩的必要性。
(二)唤醒已知,探索未知
1、复习旧知识,准备学习新知识,激发学生的学习动机,调动学生的学习积极性。
2、 第一次理解单元1的含义。
(1)老师说:12除了把一个苹果分成两部分外,拿一个苹果还能意味着什么?为了便于学生学习问题,老师为学生提供了一些实用材料(8个围棋、1米长的绳子、一张圆形的纸、一张熊猫画等),将他们分成小组,以小组合作的形式进行绘制和折叠,并尝试用这些学习辅助工具表达12个。
(2)小组沟通和分享结果
每个小组派代表到物理投影仪,向大家展示他们的操作方法和结果。
(3)教师利用多媒体技术突破重点难点问题。
例如,当学生使用8个棋子和6只熊猫来表示12的分数后,教师展示课件,并通过视觉演示让学生清楚单位可以是一个圆、一个测量单位和一个由多个物体组成的整体。
(4)引导和总结。在比较相同和不同之后,让学生发现、学习、探索、体验和理解单元1并讨论该单元结合实际情况,体验单位生活
2、再次操作并理解分数
(1)的含义第三,让学生用学习辅助工具表达不同的分数。在操作过程中,让学生意识到相同的学习辅助工具表现出不同的分数,从而得到不同的分数。如果份数不同,分数也会不同,为总结分数的意义做准备。同时,在操作过程中,培养学生的创新思维
(2)引导学生尝试总结分数的意义
(3)阅读课本第86页,自学分数的意义。
(4)5738例如,合并分数的含义以及分子和分母的含义。
(三)反馈练习
在这一环节,教师根据学生反馈的信息及时规范教学,使学生能够有效地掌握知识,达到培养和提高的目的。为了将面向所有人的教学与因材施教结合起来,让每个学生都取得成功,我设计了以下练习:
1、使用分数表示下图
2、中的彩色部分使用下面的分数表示图片中的彩色部分是否正确?为什么?
以上两个问题是基本练习。目的.是突出本课程的重点和难点,加深对分数含义的理解。
3、在游戏中赢得红旗
男女团队,派代表到前线赢得红旗,但要听从老师的指挥。如果你得到了正确的红旗,它将属于这个团队。如果您得到错误的机会,它将自动转移到下一个团队。老师将是先发者,其他学生将是小裁判。女生代表走到前面,拿走所有211人,男生拿走剩下的19人,女生拿走剩下的14人,男生拿走剩下的23人,女生拿走剩下的12人,剩下的一方将奖励全班。
该题的设计不仅加深了学生对分数含义的理解,而且提高了学习兴趣,符合小学生的心理特点,训练了学生的思维,培养了学生思维的广度和灵活性。
(四)全班总结,揭示主题
在这节课上,我们一起学习了分数的含义,并对分数有了进一步的理解。还有很多关于分数的知识!学生们在课后继续学习和探索;老师把学生的学习兴趣延伸到下一节课。
分数的意义教案【篇4】
教学内容:
五年级下册第85-87页。
教学目标:
1、引导学生经历探究分数意义的过程,理解分数表示“部分与整体的关系”及单位“1”的含义。
2、认识分数各部分名称及分子、分母表示的意义。
3、培养学生分析、综合、比较、抽象、概括等初步的逻辑思维能力。
4、体验学习数学的成功和愉悦,培养学生学习数学的积极情感。
教学重难点:
充分理解分数是表示“部分与整体的关系”
教(学)具准备:
每个小组一个圆片、一条10厘米长的线段、6根彩笔、一张长方形纸、熊猫组图、苹果组图、玻璃球、多媒体课件一套。
教学过程:
一、创设情境,引入新知
谈话导入:
拿出4个苹果,提问平均分给4个人,每人分得多少?
有2个苹果,平均分给2个人,每人分得多少?
有1个苹果,平均分给1个人,每人分得多少?
“半个”这个结果还能用整数表示吗?用分数1/2表示。
师:实际生活中,人们在进行测量和计算时往往不能得到整数的结果,为了适应这种实际的需要,于是就产生了分数。从而揭示课题。
二、探索交流,建构分数
(一)教学分数的意义
1、教学把一个物体、一个计量单位平均分
找分子是1或几的分数:
(1)师提出要求,生动手操作。(出示课件)
(2)组织汇报交流
交流中引导学生说出找分数的过程,体验分数的意义。
2、教学把一个整体平均分
(1)师提出要求,生动手操作。(出示课件)
(2)组织汇报交流
a交流苹果组图,引导学生说出找分数的过程,把谁平均分
b联系上一环节中的内容比较被平均分的东西有什么不同?
C教学“整体”,教师点出像4个苹果这样的多个物体就称之为一个整体,8个苹果平均分,也叫把一个整体平均分。
D利用“一个整体”概念这个新知来理解在“熊猫组图”中找到的分数。重点沟通相对量与具体量之间的联系。
3、教学单位“1”
师指出:像这样的一个物体、一个计量单位、许多物体组成的一个整体都用自然数1来表示,就叫做单位“1”。
追问:谁可以做单位“1”?
4、根据板书师生共同归纳分数的'意义,补充完整分数的意义及课题。
5、随机练:a说出黑板上的分数表示的意义。
B联系生活,让学生在现实情境中把握分数的意义
(二)自学课本,认识分数的各部分所表示的意义
1、师提出自学要求,生自学课本
2、生举例汇报自学所得
3、随机练:拿出6支彩笔的()/()——1/2、分母是6、分子是1、2/3
生说出理由
三、分层练习,深化提高(见课件)
1、快速动笔,课本中做一做
2、轻松片刻。(游戏:摸一摸,说一说)
一个器皿里装有8个玻璃球,生摸出后说出占整体的几分之几。
四、总结
五年级下册《分数的意义》教案这篇文章共3341字。
分数的意义教案【篇5】
学习内容:
课本第75—76页例1及“做一做”第1题。
学习目标:
1、我能通过学习归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。
2、我能体会到数学知识间的内在联系,感受学习数学知识的价值。
学习重点:
我能理解和掌握分数的基本性质。
学习难点:
我能应用分数的基本性质解决简单的实际问题。
课前准备:
准备3张完全一样的正方形纸片。
学习过程:
一、导入新课
二、合作探究、检查独学
1、小组内检查独学部分的题目完成情况,质疑探讨,展示动手操作。
2、自学教材75页内容,思考下面的问题:
(1)通过例1的学习你发现了什么?
(2)它们的分子分母各是怎么样变化的?
(3)根据上面的例子,可以得出什么规律?
(4)根据分数与除法的关系,以及整数除法中商的变化规律,你能说明分数的基本性质吗?
分数的基本性质是:________________________________________。
3、小组代表展示、汇报
4、总结升华
5、巩固练习:完成课本第76页“做一做”第1题。
五年级下 册分数的意义和性质教案4
学习内容:
课本第60—61页内容,练习十一第1—4题。
学习目标:
1.我能通过学习知道分数是怎样产生的。
2.我能在正确认识单位“1”的基础上,理解分数的.意义。
学习重难点:
我能理解单位“1”及分数的意义。
课前准备:
正方形纸
学习过程:
一、导入新课
二、合作探究、检查独学
1.小组内检查独学部分的题目完成情况,质疑探讨。
2.自学课本第60、61页内容。根据自学内容我发现:
(1)分数是如何产生的?
(2)分数的意义是什么?
(3)什么是单位“1”?
(4)议一议:分数的分母和分子与什么有关系?结合你创造的分数,说一说分数表示的是什么?
3.小组内合作交流,小组代表展示、汇报。
4.总结升华:分数的定义是:把单位“1”()若干份,表示这样的()或者()的数叫做分数。
5.我能行:完成课本第63页练习十一第1—4题。
分数的意义教案【篇6】
教学目标:
1、使学生初步认识掌握百分数的应用,理解百分数的意义,了解百分数和分数在意义上的不同点;能说出一个数是另一个数的百分之几,能正确地读写百分数,运用百分数解决简单的实际问题,知道百分数在实际应用中的重要性。
2.通过观察思考、比较分析、综合概括、组织学生探索,让学生主动参与、学会讨论,培养学生自主探究知识的能力和创新意识,培养学生的分析比较能力。
3.结合相关信息,对学生进行思想品德教育。
教学重点
使学生正确理解百分数的意义,熟练地读写百分数.
教学难点
使学生弄清百分数与分数的联系与区别.
教学过程
一、问题解决中建构
1、创设问题情境,学生小组讨论解决
唐老鸭很好客,一天它邀请好朋友皮卡丘、小白兔和米老鼠来家做客。唐老鸭准备了三杯糖水来招呼客人。米老鼠说:"我可喜欢吃甜食了,我要最甜的那杯糖水。"小白兔说:"我要保护牙齿,就拿最不甜的那杯给我吧。" 皮卡丘说:"我随意啊。"面对伙伴们提出的各种要求唐老鸭有点犯难了。我们大家一起来帮助唐老鸭解决这个难题好吗?
〖点评:问题情境的创设,激发了学生的兴趣和探索新知的热情,同时有效的避免了教材中的不平等抽样所带来的负面影响。
(1)出示:
糖水重量
第一杯80
第二杯75
第三杯100
谈话:根据唐老鸭提供的数据,我们大家能帮助它解决问题吗?(不能)
那还应该知道什么呢?(糖的重量)
(2)接着出示投影:
糖水重量糖的重量
第一杯8020
第二杯7515
第三杯10021
算一算、比一比:
(下面就请同学们分小组讨论,统一一种你们小组的解决方案。生小组讨论,师巡视指导了解情况。)
汇报:
1、算出糖占糖水的几分之几就可以进行比较了。 第一杯:20÷80=1/4
第二杯:15÷75=1/5
第三杯:21÷100=21/100
集体:通分
根据汇报板书:
第一杯:20÷80=1/4=25/100
第二杯:15÷75=1/5=20/100
第三杯:21÷100=21/100
大家帮助唐老鸭解决了难题,它的好朋友们终于喝上了糖水。就在这时门铃响了,唐老鸭开门一看是小猫,看着气喘嘘嘘的小猫想是一路跑来的。唐老鸭赶紧为小猫冲了一大杯糖水。
同时投影出示:
糖水重量糖的重量
第一杯8020
第二杯7515
第三杯10021
第四杯20045
小猫边喝边说,我的这杯糖水可真甜啊。一旁的米老鼠不服气的说,我的糖水才甜呢。两人争执了起来,唐老鸭又犯难了,同学们你们来帮着平息一下这场风波吧。
板书:第四杯:45÷200=9/40师:能比较吗?那咱们是不是所有的数再重新通分呢?(不必要,45÷200=45/200,也就是22.5/100。)
可是22.5/100好象不太符合分数的写法,用彩色粉笔来板书吧。(板书:22.5%)
归纳:
1、要想知道哪杯糖水更甜,只要算出每一杯糖水中糖占糖水的几分之几就可以了。
2、最好再将这些分数写成分母是100的分数,这样比较起来很方便。
〖点评:第四杯糖水的比率是22.5%,很好的让学生感受到了百分数在统一分母进行比较时的优越性。体现了探索新知的价值之所在。
二、概念引入:
像表示一个数是另一个数的百分之几的数叫百分数。百分数又叫百分率或百分比。
百分数的分子可以是整数,也可以是小数;可以小于100,也可以等于100,还可以大于100。
百分数是一种特殊的比率关系,它的分母是一个固定的数100,所以,百分数也叫百分率或百分数。
练习巩固 初步认识
〖点评:让学生自己小结,教师提炼得出百分数的定义,可谓水到渠成,真实而自然。
三、有层次的练习中深化
1、教学百分数的写法和读法
写法:示范百分号的写法
读法:25%读作百分之二十五(注意为了区别与分数的读法,25/100读作一百分之二十五,而25%则读作百分之二十五)
意义:说说22.5%表示什么意思呢?(表示第四杯糖水的糖占糖水的百分之二十二点五)
练习巩固
2、百分数和分数在意义上区别和联系
(1)将五组数分类引入百分数和分数的区别和联系
(2)百分数和分数在意义上区别和联系
①都有分子和分母,但百分数的分母是100,分数的分母可以是一切不为0的自然数.②分数既可以表示两个数的倍数关系,也可以表示一个实际数量;百分数只能表示两个数的倍数关系,所以百分数不能带有计量单位名称.③用分数表示计算结果时,通常要写成最简分数;用百分数表示计算结果时,能约分的也不能约分④分数与百分数书写的形式也不同
(3)练习巩固分数与百分数的联系与区别(辨一辨、说一说)
〖点评:这一组练习将学生推到了不可回避的矛盾冲突面前,有效的对比了分数与百分数异同点。
四、在生活中的百分数
1、读信息谈感受
一次性筷子是日本人发明的,日本的森林覆盖率高达65%,但他们却不砍伐自己国土上的树木来做一次性筷子,全靠进口。我国的森林覆盖率不到14%,却是出口一次性筷子的大国。
我国耕地面积占世界人口的7%,可我国的人口却占世界的22%。我国水土流失面积占国土面积的18.7%。沙化土地占国土面积的15.5%。
地球总储水量中只有3%是淡水,而这些淡水中可以直接饮用的只有0.5%。我国水资源污染明显加重。有42%的城市水源受到污染。
2、做个有心人:在生活中去收集百分数实例,并说一说这些百分数各表示什么意思.
3、你能根据百分数说个成语吗?
(十拿九稳90%、百里挑一1%、十全十美100%、事倍功半50%、一箭双雕200%、百发百中100%)
4、这节课兴奋过、紧张过,还有遗憾。你填一填情绪比率:
愉快占( )% 紧张占( )%
遗憾占( )% 满意占( )%
〖点评:这一组练习将学习的知识应用到生活中去,让学生感受到百分数在实际生活中应用的广泛及重要性。
五、反思体验
这节课你学了哪些知识?
你有哪些收获或感受?
在生活中百分数还有哪些应用?
你还有什么新的见解?
教师让学生说,说到关键、重点的内容进行强化
送一句名言
天才就是百分之九十九的汗水加百分之一的灵感 。
天才= 99%的汗水+ 1%的灵感
----爱迪生
分数的意义教案【篇7】
一、教学目标:
1、使学生认识百分数。
2、了解百分数的意义。
3、会写百分数。
4、区分百分数与分数的不同。
5、让学生在各种活动中,培养比较、分析、分辨的能力。
二、教学重难点:
理解百分数的意义
三、教学过程:
(一)、引出百分数,教学百分数的读法。
1、百分数的引出
师:近年来,我们学生的近视率引起了大家的高度重视,根据去年年底的统计,我市学生的近视情况如下(媒体出示)
师:这里出现了三个新的数,它们分别读作:百分之十八,百分之四十九,百分之六十四点二,你还在什么地方见过上面这样的数呢?
2、揭题
生展示他们找到的百分数。
师有选择的板书并小结:看来生活中这样的数确实挺多的。数学上把这样的数,叫百分数。那么什么是百分数的意义?百分数怎么写?还有哪些跟百分数有关的知识呢?这节课,我们就一起来学习一下。
(二)、凸显百分数的优点,教学写法
1、比较中凸显百分数的优点
师:大家都在关心我们学生的近视情况,作为老师当然更要关心我们学校同学的近视情况。下面是老师调查的二、三年级的近视情况(出示表格)
年级 总人数 近视人数 近视人数占总人数的 近视率
二年级 20 2
三年级 25 3
师:二年级的近视人数占总人数的多少呢?三年级呢?哪个年级的近视情况好些呢?你是怎么比较的?可以先在草稿本上写写算算。
学生反馈:可能会出现通分成分母是50的,也可能是100的。
师挑选通分成分母是100的提问:为什么把分母都通分成100呢?(便于比较)
2、教学写法
师:二年级近视人数占总人数的10/100,又可以写成二年级近视率是10%。(媒体出示再板书)我们写百分数的时候在分子10的后面加上百分号。看看我们写百分数的时候要注意什么呢?(百分号的小圆圈写小点)那么三年级近视人数占总人数的12/100,可以怎样写呢?生写在草稿本上,指名一生板演。
(三)、百分数意义、
1、指导着说百分数的意义
师:三年级的近视率12%指的是哪两个数之间的关系?
师:也就是说三年级的近视率12%表示?(三年级近视人数是总人数的12/100)(板书)
师:那么二年级的近视率10%又表示什么?(二年级近视人数是总人数的10/100)(板书)
2、生自主说
师:那么谁能说说我市小学生的近视率18%,中学生的近视率49%,高中生的近视率64。2%分别表示什么意思呢?自己轻轻地说一说。
生反馈说,师选择小学生近视率表示意义板书。
师:看到这些信息,你想说什么呢?
3、小组内说
师:通过这些百分数的呈现,我们大家简洁明了的看到了学生近视情况的严重性,其实在生活中百分数的应用非常广泛,同学们刚才也找了很多,你能把你找到的百分数所表示的意义在小组内说说吗?
生反馈,师挑选组的代表说,并板书。
4、小结百分数意义
师:说了那么多百分数的意义,那么到底百分数表示什么呢?
师小结:刚才同学们都已经说的都非常接近了。百分数就表示一个数是另一个数的百分之几。(板书意义)
(四)、辨别百分数与分数区别
1、辨别
师:我们来看看下面的百分数是表示谁是谁的关系呢?
出示:
鸡的只数是鸭的75%
一根绳子的长度是一根铁丝的51/100。(51/100可以改写成51%吗?)
出示:
一堆煤重87/100吨。(看看下面这个分数可以改写成百分数吗?为什么?)
2、师小结:分数可以表示一个具体的数,也可以表示两个数之间的关系,而百分数只能表示两个数之间的关系,后面不能加单位。
3、加深理解进行判断
(1)一段绳子长29/100;
(2)一段绳子长29%米;
(3)分母是100的分数都是百分数;
(4)百分数的分母都是100
(五)、巩固练习
师:简单回顾一下,我们这节课学习了哪些知识?你会写百分数了吗?
1、写出下面的百分数
百分之一 百分之二十八 百分之零点五
2、读出下面百分数,想想下面的信息给了你哪些启示?
(1)一次性筷子是日本人发明的,日本的森林覆盖率高达65%,但他们一次性筷子全靠进口;我国森林覆盖率不到14%,却是出口一次性筷子的大国。
(2)地球总储水量中只有3%是淡水,而这些淡水中可以直接饮用的只有0。5%。
(3)今天我们班同学的出勤率是100%。
四、教学结束:
课堂总结
师:这节课你有哪些收获呢?其实爱迪生说过天才=99%的汗水+1%的灵感
同学们对于学习也要付出努力,不怕辛苦。
分数的意义教案【篇8】
一、在解决简单的实际问题中,沟通整数除法与分数的联系
1. 回顾整数除法的含义。
(1)幼儿园的马老师把6块小点心,平均分给3个小朋友,每个小朋友得到多少块?
(2)提问:你是怎么得到的?
预设:6÷3=2(块)
2. 回顾分数的意义
二、在解决稍复杂的实际问题中,深化对分数意义的理解
(一)借助问题解决完成分数意义的深化
1. 把3块月饼,平均分给4个人,每人分得多少块?
2. 要求:请你用手中的学具剪一剪、摆一摆,也可以在本上写一写、画一画。表示出平均每人分得多少块?
3. 汇报:一边摆一边说自己是怎么得到每人分的块数的。
(二)巩固用分数表示商
请小组内交流想法
① 把这桶饼干平均放在5个保鲜盒中,平均每个保鲜盒放多少kg?
② 马腾从家到学校走了15分钟,他平均每分钟走多少km?
三、在理解分数意义的基础上,探究分数与除法的关系
1. 提问:观察这几个除法算式,你认为除法与分数有怎样的关系?
2. 提问:如果用a表示被除数,用b表示除数,这个关系式可以怎样写?
3. 提问: a、b可以是任何数,对吗?
4. 小结:在除法中,0不能做除数,分数中的分母,相当于除法中的除数,所以分母不能是0。
四、综合应用,巩固理解分数与除法的关系
1. 教材第50页,“做一做”。
在下面括号里填上适当的数。
2. 教材第51页练习十二,第1题。
这些葡萄干平均装在2个袋子里,每袋重多少千克?
平均装在3个袋子中呢?
分数的意义教案【篇9】
一、教学内容:
人教版义务教育课程标准实验教科书小学数学五年级下册教材第61~62页,练习十一部分练习。
二、教材分析:
“分数的意义”一课是人教版新教材五年级下册的内容,是对小学生数概念的一次重要扩展。与旧教材相比,新教材在单位“1”这个概念的理解上进行了微调,将原先的“一个物体、一个计量单位,几个物体组成的一个整体都可以看作单位“1”这项内容调整为比较符合认知习惯的“一个物体、一些物体都可以看作一个整体,通常用单位‘1’表示”。
三、教学目标:
1、使学生在初步认识分数的基础上,理解分数的意义,掌握分子、分母和分数单位的含义。
2、通过分数的学习,培养学生动手操作,观察、思考、抽象概括的能力。
3、使学生体会到分数就在我们身边,运用分数可以解决生活中的实际问题,从而增强学生学习数学的兴趣。
四、教学重点:理解分数的意义
教学难点:认识单位“1”和概括分数的意义
五、学情分析:
学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数,知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数及同分母分数的大小,会加减简单的同分母分数。通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,让学生经历整个概念的形成过程,帮助他们从中获得感悟,促使其主动参与建构。
六、设计理念:
本课的教学设计主要以构建主义基本理念为依托,注重学生的认知规律,关注学生的生活经验,让学生在做数学中体验分数的价值,激发学习的兴趣,培养良好的数感。 《数学课程标准》指出:“让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。”为了比较完整的建立起分数的概念,利用孩子们在三年级对分数的初步认识已有的知识为基础,提供平台让学生举例说明分数的含义,让学生在合作、探
究中主动获取知识,找到把许多物体组成的一个整体平均分与把一个物体平均分之间的内在联系,抽象概括出分数的意义,并强调了单位“1”的概念,揭示了分数表示部分与整体的关系。教学过程中师生、生生之间的自我评价与相互评价,增强了学生的自信心和责任感,促进师生的共同发展。
分数的意义教案【篇10】
教学内容:九年义务教育六年制小学实验课本,第十册,分数意义。
教学目标:
进一步理解分数意义,通过两个分数比较大小,深化学生对分数单位的理解。
培养学生判断推理的能力。
培养学生用辩证的观点看待问题。
教学重点、难点:
重点:进一步理解分数单位。
难点:(分数单位和分数单位的个数都不同的分数进行比较。)对分数单位的
深化认识。
教学过程:
1.复检
(1)前面我们对整数的小数有了一定的认识,我们研究整数和小数这部分知识,
关键的一点是什么?(数位、计数单位、进率)整数从右边起的前三位及它们的计数单位分别是什么?
(2)我们知道整数和小数都是十进制的数,谁能说说你是怎样理解“十进制”的?
小结:今天我们就在这个基础上来研究分数。[板书:分数]
2.新授
第一层:理解分数意义,初步理解分数单位这个概念。
出示 、
(1)看到 你能想到什么?(以 为一份有这样的2份)[板书: ]
(2)“ ”表示什么?[板书: ]这儿(指 后面)应该写什么?( 、 )
(3)第二排的数都表示的是几份?(一份)
(4)第二排的数与第一排的数之间有什么关系?
(5)什么是分数单位呀?
(6)分数单位与“1”之间有什么关系?
小结:既然同学们对分数单位这么感兴趣,我们这节课就重点来研究一下分数单
位。
[评:紧扣重点,采用对比的方法,加深学生对“分数单位”的认识]
第二层:分数单位相同,分数单位的个数进行比较
出示
(1)我们观察一下这两个分数有什么特点?(分母相同)不说分母相同,还可以怎样说?(分数单位相同)分数单位相同也就是什么相同?(每份相同)[学生回答时注意前提条件]
(2)这两个分数的每份相同,也就是分数单位相同,我们看看这两个分数表示的大小相同吗?能不能比出大小?
(3)我们除了对这两个分数进行比较,还可以怎么样?(加减)
(4)进行加的结果是多少?( )12是怎么来的?什么没变?(分数单位)什么相加了?
(5)减的结果是什么?( )谁减谁?“2”是怎么来的,同样是什么没变,跟加法的道理一样不一样?
(6)在加减的过程中分母为什么没变?为什么分数单位相同可以直接相加减?
出示
问:这两个分数可以怎样?(比较、加减)
[也可将这两个分数与1进行比较]
小结:这两组数,分母都相同,也就是分数单位相同,在分数单位相同的情况下,比较两个分数的大小有什么规律?
[评:1.分母相同是外在的表面现象,教师引导学生透过现象看到分母相同,就是单位“1”相同,分数单位相同(每份相同)这样,就在“同分母分数比较大小中抓住了实质。不仅使学生掌握了比较大小的方法,更进一步理解了分数的意义,又为学习分数的计算奠定了知识和思维的基础。
2.让学生充分说理,每一个设问都给学生提供了运用概念解决实际问题的情境。如: 和 ,分母相同,说明单位“1”相同,分数单位相同。在分数单位相同的情况下,5个 比7个 小,所以
第三层:分数单位的个数相同,分数单位的大小进行比较
出示
(1)分母还相同吗?(不同)有没有相同的地方(单位“1”相同,取的份数也相同。)
(2)谁大?( )5比7小,为什么 反而大呢?
出示:
问:观察这个分数有什么特点?请你判断一下这两个分数的大小。
小结:当单位“1”相同的情况下,分的份越多,它的分数单位就越小,分的份
越少,分数单位就越大。刚才我们研究了两组很有规律的分数,在这个基础上我们继续看。
[评:在分数单位比较的过程中,深化的分数单位的理解,为后面的分析推理提供依据。]
第四层:发散思维的训练,深化对分数单位的理解
出示:
问:我们观察一下这两个数,有什么特点?(分数单位与分数单位的个数都不同)有没有相同的?(“1”相同)“1”相同,分数单位不同,所取的份也不同。能不能进行比较呢?讨论一下。(可先将 与 进行比较,或 与 =1进行比较,再比较这两个分数的大小;或与“1”的一半进行比较)
出示
问:这组分数同样分子和分母都不相同,看能不能向刚才这种方法一样比较一下。(先将 与 进行比较)
小结:我们刚才比较了两个分数的大小,而且当分母相同的情况下,还可以把两个分数直接相加减,无论是比较还是加减,我们研究的'关键的一点都是什么?(分数单位)
[评:发散思维的活动方式是分散的、辐射的、昊散式的发散思维的训练,目的使学生灵活运用知识,使思维更活跃,在培养学生创造思维中起重要作用,教师设计的三组题,为学生创设了各显其能,施展才华的条件,学生大胆地冲破思维的局限性,从不同角度,沿着不同的方向进行思考、想象、分析、推理,使问题得到解决。如:①因为 > 所以 >
②因为 > 所以 >
③学生大胆设想,都转化成分母相同再比较,等等。
学生方法的多样性,灵活性来源于对概念理解的深刻性,这种“一题多解”、“求异思维”的能力,是学生已具有创造性学习能力的体现。]
第五层:通过假分数与带分数的互化,进一步认识分数单位,在这当中渗透分数单位与单位1之间的关系。
出示
(1)这个分数和我们前面研究的分数比较一下,有什么不同?(分子比分母大)分子比分母大,这样的分数叫假分数。(真假的假)那么我们前面研究的这些分数分子都比分母小,你们说,这些分数就应该叫什么呀?(真分数)
(2)分子比分母大说明什么?(这个数比1大)
(3) 我们就可以看作几部分?
(4) 和1 的大小一样不一样?我们就可以用什么符号连接?
小结:这两个分数所表示的意义一样吗?它们之间有什么联系?(讨论)
[评:通过假分数与带分数的互化,进一步认识分数单位,渗透分数单位与单位“1”之间的关系。这里运用观察、比较、适时的讨论,学生对假分数和带分数的意义有了正确的认识。]
3.质疑
4.总结
这节课我们研究了什么?分数单位在分数这部分知识中占有很重要的位置,这一知识我们研究得透,对于我们今后研究有关的知识会有很大的帮助。
七.板书设计
八.反思:
本节课结构严谨,重点突出,始终给基本概念“分数单位”以中心地位,知识呈现过程清晰,过程设计符合儿童认知。
以“比较分数大小”这一知识为载体,把“分数单位”这一核心概念挖掘来,在不断的深化和扩展中,学生既学了知识又为后叙知识做好铺垫,同时促进了学生思维质的发展。
教师语言简练,设问有利于激发学生的思维,学生不仅学会了知识,增长了能力,在生生相互沟通中以科学的态度对待科学知识,在民主的氛围中学生身心和谐发展。
分数的意义教案【篇11】
教学目标
(1)使学生进一步掌握通分和分数大小比较方法,进一步理解分数基本性质。
(2)培养学生收集信息的能力,并运用所学的饿知识正确地解决一些实际问题。
1/2和1/31/5和1/41/6和3/42/3和1/612/7和5/63/8和5/6
2、比较下列每组中分数的大小。
6/11和17/335/14和8/212又7/12和2又8/53/10、7/20和11/30
根据学生的饿错误进行有针对性的饿讲评。
1、生活中有很多地方也要用到分数大小的比较。你收集了,吗?
讲评作业。
三、深化训练
1、出示:做同样的一批零件,王师傅4分钟做7个,张师傅5分钟做8个,李师傅3分钟做5个。哪一位师傅是老师傅?
引导学生发表不同的意见:速度快的并不一定是老师傅,因为老师傅已经老了;但速度快的一定是老师,因为老师的技术熟练。
1、课本第103页第3、4题中剩下的题目。
应用分数大小的比较方法比较几个具体数量的大小,在比较时,单位名称不能漏掉;重视思考题教学,开拓学生的思路,让学生懂得两个分数之间有无数个分数。
分数的意义教案【篇12】
一、教学指导思想
《数学课程标准》指出,数学教学,要让学生亲身经历数学知识的形成过程,也就是经历一个生动、丰富地思维过程。使学生通过数学活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。
二、教材分析
1、地位和作用:“分数的意义”这部分内容是在学生对分数已经有了一个初步的感性认识基础上进行探索学习的,它是学生系统学习分数的开始。学好这部分内容,将会对后续建构真分数、假分数等概念以及学习分数基本性质、分数四则运算、分数应用题等内容奠定坚实的基础。
2、教材编排特点:教材先简单说明分数的产生,再通过第85页上的一组图形,对已有的知识进行复习,在这基础上,指出还可以把许多物体看作一个整体,把这个整体平均分成若干份,这样的一份或几份也可以用分数来表示,并用86页的一组图来进行说明。从而引出单位“1”,并总结概括出分数的意义。结合分数的意义,再讲解分母、分子的意义。
3、教学目标:依据数学课程标准的理念,结合教材自身的特点和学生的认知规律,本课在知识与技能、过程与方法、情感态度与价值观方面达到如下
教学目标:知识与技能方面:通过组织学生创造分数、观察比较、抽象单位“1”的活动中,使学生正确建立单位“1”的概念,理解分数的意义。过程与方法方面:在探索、概括、理解体会分数意义的学习活动中,培养学生的抽象思维能力和运用已有的知识和技能获取新知识,解决新问题的能力。情感、态度与价值观方面:结合学生认知规律,充分发挥信息技术与学科教学整合的功能,激发学生的求知欲望。培养学生的自我探究的意识和创新精神。教学重点:理解分数的意义。教学难点:理解单位“1”的含义。
三、说教学方法
学生认识事物是由易到难,由浅入深循序渐进的。在教学中本着遵循他们的认知规律,采用以教师使用信息技术为主的演示型教学模式,坚持以学生为主体,教师为主导的原则。采用启发诱导、探究等教学法,并穿插练习。通过动手操作、直观演示,让学生充分感知,再经过比较、归纳,突破许多物体组成的一个整体也可以看作单位“1”这一难点。
四、说学法
指导学生学习过程的始终,都离不开学法。在本课的教学中学法的指导寓于教学过程的始终。 1、在教学中,学生以小组为单位借助信息技术媒体进行自主操作、自主探究学习。教师教给学生探索知识的方法。教师为学生提供了一些动手的`材料,让学生创造分数,通过观察、比较他们的异同,领悟出单位“1”不仅仅可以是一个物体、一个计量单位、还可以是许多物体组成的一个整体,达到感性认识到理性认识的升华。 2、引导学生在获取知识的同时,掌握对事物本质进行归纳总结的方法。
五、教学过程
设计布鲁纳指出“探索是教学的生命线。”在本课教学中,我没有把现成的概念告诉学生,而是引导学生在操作、实验中、概括和交流等数学活动中发现问题、探究问题、获得知识完整的概念。对新课标提出的“以自主探索与合作交流作为学生的主要学习方式”做出了很好的诠释。根据学生由“感知—表象—抽象”的认知规律,在教学中主要采用了创设情境、动手操作及自主探究的教学方法,即把问、说、讲、做的权利和时间交给学生,力途为学生营造一个宽松、民主的学习氛围,充分调
动学生眼、口、脑、手等多种感官参与认识活动,让孩子们真正感受到“我能行”。在深入剖析教材分析学生的基础上,全课以“创设情境,习旧引新——探索交流,建构分数——分层练习,深化提高——首尾照应,升华认识”四大主线贯穿全课,其中动手操作,创造分数这一大环节包括小组动手创造分数;小组汇报交流展示操作成果;观察比较,抽象单位“1”;概括抽象,归纳分数的意义四步。
具体过程:
(一)创设情境,习旧引新动画演示,激发学生欲望。课的开始创设一个学生喜闻乐见的整数、自然数和分数组成的童话情境,为新知的引入拉启了一个良好的序幕,使枯燥的数学内容生活化、趣味化,通过扮演整数妈妈进行介绍,既复习了分数的初步认识,又了解了分数是怎样产生的,同时又借自然数想急切了解分数的有关知识,引导学生参与教学目标的制订。该环节做到了在情境中习旧,激活了学生原有的认知结构。
(二)探索交流,建构分数建构主义强调,学生学习数学的过程实质上就是“做数学”的过程。在本环节,教师注重引导学生动手实践、自主探索,采用合作交流的学习方式学习新知。
具体表现在:
1、小组动手创造分数事先老师给每个小组提供了一套学习材料,并要求小组长分分工,同学们利用提供的学习材料折一折、分一分,看看能得到哪些分数,而后再与小组同学交流一下,说说自己是怎样得到这些分数的。
2、小组汇报交流展示操作成果,教师也就结合学生的发言同时板书。由动手操作创造分数——自主探索找分数——合作交流说分数,学生在这一过程中获取了广泛的数学活动经验,为学生主动建构分数的意义做好了孕伏。
3、观察比较,抽象单位“1”要求学生仔细观察分数,小组展开讨论,比较“分数”,然后汇报交流,共同分享,得到所有分数的异同。在此基础上老师小结:象这样的一个物体、一个计量单位、一个整体可以用自然数1来表示,通常叫做单位“1”。这一环节通过相同点与不同点的讨论,突出了分数意义的关键“平均分”,为单位“1”的抽象做好了准备。通过比较——抽象——具体化,使学生深刻地理解了单位“1”的内涵。应该说这个环节是具有开放性的,有利于培养学生创造性思维,而且较好地突破了难点。
4、概括抽象,归纳分数的意义首先要求学生结合黑板上的例子用自己的语言说说什么叫分数(至少请3—4位同学叙述);其次引导学生理解“若干”一词的含义;再结合学生的发言,板书分数的意义。然后就黑板上的分数,任选一个请学生说说它的意义。再引导学生说8/10 、 8/x、x/8、x/x的意义,从而抽象出分母、分子的含义。分数意义的归纳注重鼓励学生用自己的语言说出,做到了新课标要求的淡化概念,注重实质。学生在有趣的情景中习旧、反思、总结,提高了认知和情感的参与度。尤其是8/10 →8/x→x/8 →x/x这一分数模型的构造,自然地引申出了分母与分子的含义,能感悟到分数的本质、数学的简洁美。分数意义的归纳环环相扣、层层递进,引领学生体验了分数意义的再创造过程,同时也突出了本节课的重点。
(三)分层练习,深化提高练习是巩固新知的必要手段,为此,我设计了:
1、自我检测。(P87页练一练)
2、快速抢答。(用分数表示下面各图中的涂色部分———练习十八中的1题)
3、做一做。(用下面的分数表示图中的涂色部分,对不对?手势判断,完成练习十八中的第2题)以上练习的安排,从内容上紧紧围绕重点并遵循了由易到难,由浅入深地原则,体现了层次性、针对性、趣味性,也调动了学生的积极性。为把枯燥的数学知识融入到了丰富的生活中,较好地体现了时代性、生活性,而且要在潜移默化中对学生地渗透思想教育,我设计了分数意义的实际应用的练习:点击生活
4、点击生活。(说说下列每句话中分数所表示的意义)
⑴小红花了1小时的2/3做功课。
⑵小明吃了一块饼的3/4。
⑶这一块菜地的1/5种了西红柿。
5、游戏:摸一摸,猜一猜临近下课,学生易于疲劳,注意力也易涣散,于是我安排了摸一摸,猜一猜游戏,通过摸一摸,猜一猜这两项富有情趣的活动,很好地考察了学生对分数意义的理解情况,使学生对数学产生亲切感。同时也为后续学习分数乘除法应用题做好了铺垫。正如波利亚所指出的:抽象的道理是重要的,但要用一切办法使他们看得见、摸得着。
(四)首尾照应,升华认识
让我们一起回到刚才的童话故事,如果你是整数妈妈,你能给自然数再深入介绍一下分数阿姨吗?用“分数做客”的童话贯穿整节课的始终,突破以往数学课上复习与总结的旧模式,使得课的结构浑然一体。
分数的意义教案【篇13】
学习内容:
课本第76页例2及“做一做”第2题。
学习目标:
1.我能通过学习归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。
2.我能体会到数学知识间的内在联系,感受学习数学知识的价值。
学习重难点:
我能应用分数的基本性质解决简单的实际问题。
学习过程:
一、导入新课
二、合作探究、检查独学
1.自学教科书76页例2: 把和化成分母是12而大小不变的分数。
(1)思考:① 要把2/3化成分母是12的分数,我们就要把分母( )乘( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母3乘了个4,所以要使分数大小不变,就应该( )。最后分子分母都乘了个( ),就把2/3化成了分母是12的分数( )。
② 要把10/24化成分母是12的分数,我们就要把分母( )除以( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母24除以了个2,所以要使分数大小不变,就应该( )。最后分子分母都除以了个( ),就把10/24化成了分母是12的分数( )。
(2)结合我们上面的思考,把教科书75页例2中的几个方框填完整。
2.小组代表展示、汇报
3.总结升华
4.我能行: 完成课本第76页“做一做”第2题。
分数解决问题教案
工作总结之家的编辑历经千辛万苦终于为大家准备好了令人惊喜的“分数解决问题教案”,愿您在这里找到自己的阅读兴趣和习惯掌握自己的阅读技巧。教案课件是老师工作当中的一部分,每个老师对于写教案课件都不陌生。设计教案需要注重授课思路的清晰和逻辑性。
分数解决问题教案(篇1)
【教学目标】
1.使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百分率的含义。
2.能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。
3.培养学生的知识迁移能力和数学的应用意识。
【重点难点】
1.解答求一个数是另一个数的百分之几的的百分之几的应用题。
2.对一些百分率的理解。
【教具准备】
小黑板、口算卡片。
【参考的有关数据】
稻谷出米率约72% 小麦出粉率约85% 棉子出油率约14%花生仁出油率约40% 油菜子出油率约38% 芝麻出油率约45% 蓖麻子出油率约45%
【教学过程】
第1课时
活动(一)创设情境,提出问题
1.口算比赛:(时间:1分钟)
5/6―1/2 3/10×2/9 1―1/4 4/5÷1/5 4/5÷4/3
5/8+3/4 7/12×4/7 7/8+1/4 1/5+1/3 3/4÷5
想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?)
2.学生根据自己的口算情况口答“做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?”
3.提出问题:能否将“做对的题数占总题数的几分之几”的分数应用题改成一道百分数应用题呢?
(校对并让学生说说自己的口算情况,错题数占总题数的百分之几”)
活动(二)相互合作,探究问题
初步感知
1.学生尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。
2.小结:“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。
共同探讨
1.师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自“做对的题数占总题数的百分之几”这是你在这次口算比赛中的正确率,“做错的题数占总题数的百分之几”就是错误率。像这些正确率、错误率等我们通常称作“百分率”。你能举一些我们日常生活中的百分率的例子吗?
2.学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
合格的产品数 发芽的个数
产品的合格率= ────────×100% 发芽率= ───────×100%
产品总数 种子的总数
3.尝试解答例题:
(1)出示课本例1和例2的条件:
例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人, ?
例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。 ?
(2)完成第113页的“做一做”
活动(三)运用知识,解决问题
1.口答:
(1)2是5的百分之几?5是2的百分之几?
(2)用 1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。
2.判断:
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。
(3)25克盐放入100克水中,盐水的含盐率是25%。
3.课堂作业:
1.我国鸟类种数繁多,约有1166种。全世界鸟类约有8590种。 ?
2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。
活动(四)全课总结
1.学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?
2.学生谈谈今天所学的知识在我们的日常生活中有什么用?
活动(五)补充练习
1.判断题。
①五年级98个同学,全部达到体育锻炼标准,达标率为98%。
②今天一车间102个工人全部上班,今天的出勤率是102%。
③甲工人加工103个零件,有100个合格,合格率是100%。
2.应用题。
①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率。
②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率。
3.作业:结合练习二十九第6题进行课外调查。
【教学反思】
创造性地使用了教材,使乏味的数学变得生动,鲜活,有意义。。注重了学习方式的多样化,密切了数学与生活的联系。学习效果很好。
分数解决问题教案(篇2)
教学内容:
教材第84、85页的内容
教学目标:
1、掌握百分数应用题的思考方法,能解释各种百分率的意义,并会正确灵活列式计算。
2、使学生理解并掌握百分数和小数互化的方法,能正确地把分数、小数化成百分数或把百分数化成分数、小数。
3、在自主探索、合作交流的过程中经历解答百分数应用题的过程,用数学的眼光观察生活,培养发现问题和解决问题的能力。
教学重点:
正确列示计算各种百分率。
教学难点:
理解各种百分率的意义。
教学过程:
一、创设情境,复习导入
1、口算比赛:(时间:1分钟)
想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?)
2、学生根据自己的口算情况口答“做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?”
3、提出问题:能否将“做对的题数占总题数的几分之几”的分数应用题改成一道百分数应用题呢?(将“做对的题数占总题数的几分之几”改成“做对的题数占总题数的百分之几”)
二、探索交流,解决问题
(一)初步感知
1、学生尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。
2、小结:“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。
3、完成84页的例1,怎样把小数、分数化成百分数?
(二)共同探讨
1、师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自“做对的题数占总题数的百分之几”这是你在这次口算比赛中的正确率,“做错的题数占总题数的百分之几”就是错误率。像这些正确率、错误率等我们通常称作“百分率”。你能举一些我们日常生活中的百分率的例子吗?
2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
出勤的学生人数
出勤率=────────×100%
学生总人数
发芽的个数
发芽率=───────×100%
种子的总数
3、尝试解答例题:
(1)出示课本例2
求一个数的百分之几是多少?要把百分数转化成分数和小数
(2)完成第85页的“做一做”
三、巩固应用,内化提高
1、把下面的百分数化成小数,小数化成百分数:
0.98%95%2.061.6%0.3860.00836%500%7.362.664.32
2、判断:
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。
(3)25克盐放入100克水中,盐水的含盐率是25%。
2、解决问题
①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率.
②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率.
四、回顾整理,反思提升
学了这节课你还有什么疑问呢?能谈谈学习后的收获或者是感受吗?
分数解决问题教案(篇3)
教学目标:
1、使学生掌握求稍复杂的已知一个数的百分之几是多少求这个数的应用题的解题方法,并能正确地解答这类应用题。
2、感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。
教学重点:
掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。
教学难点:
正确、灵活地解答这类百分数应用题的实际问题。
教学时间:
一课时
教学过程:
一、复习
1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了《用百分数解决问题(2)》教学设计。现在图书室有多少册图书?
2、学生找出这道题目的分率句,确定单位“1”,并根据数量关系列式:1400×(1+《用百分数解决问题(2)》教学设计)
二、新授
1、教学例3
(1)出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
(2)学生读题,找条件和问题,明确这道题是把谁看成单位“1”。
(3)引导思考:从“今年图书册数增加了12%”这句话中,你能知道些什么?
①今年图书增加的部分是原有的12%。
②今年图书的册数是原有的120%。
(4)学生讨论后分小组交流,并独立列式计算:
第一种:1400×12%=168(册)
1400+168=1568(册)
第二种:1400×(1+12%)
=1400×112%
=168(册)
2、通过这道题的学习,你明白了什么?(求一个数的.几分之几和求一个数的百分之几,都要用乘法计算)
3、巩固练习:完成P93“做一做”第1题。
三、练习
1、补充练习
(1)出示练习:
①油菜子的出油率是42%。2100千克油菜子可榨油多少千克?
②油菜子的出油率是42%。一个榨油厂榨出油菜子2100千克,用油菜子多少千克?
(2)分析理解:
A、出油率是什么意思?这两道题有什么相同和不同?
B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?
(3)学生独立列式解答。
2、学生做教科书练习二十二的第1、3、4题。
分数解决问题教案(篇4)
(一)教学目标。
1、理解并掌握分数除法的计算方法,会进行分数除法计算。
2、会解答已知一个数的几分之几是多少求这个数的实际问题。
3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。
4、能运用比的知识解决有关的实际问题。
(二)教材说明和教学建议。
1、本单元内容的结构及其地位作用。
本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质,求比值与化简比,及其比的应用。
本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。
通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。
本单元由三小节组成,各小节内容的编排体系及其内在联系如下图所示。
从上面的图示,不难看出教材内容之间的内在联系。
就学习分数除法而言,首先要明确分数除法的运算意义,在此基础上探究并掌握它的计算方法,然后学习分数混合运算。
关于分数除法中的解决问题,主要有两种情况,一种是问题情境的数量关系与整数除法的实际问题相同,区别只是数据由整数变成了分数。教材安排在第1节里学习。另一种是问题情境的数量关系具有一定的特殊性,表现为已知一个数的几分之几是多少,要求这个数。这样的实际问题,与上一单元求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置。
类似地,比的初步知识,也大体上显现出由概念到性质、方法,再到应用的递进学习过程。
把“比”安排在本单元中教学,主要有两点好处:第一,比和分数有密切的联系,如两个数的比可以用分数形式来表示。加强比和分数的联系,有利于加深学生对分数意义的理解和对比的认识,也有利于提高学生灵活运用知识解决简单实际问题的能力。第二,提早教学比的概念,可以为后面教学圆周率、百分数、统计图表等做好准备。例如,学生有了比的概念,就容易理解百分数为什么又叫做百分比。在这一节教材中,有关比的应用,只讲按比例分配的计算问题。
2、本单元教材的编排特点。
与原教材相比,本单元教材的编写有不少改进,主要体现在以下几方面。
(1)关注相关知识的类比,帮助学生理解所学知识。
本单元的教材,根据有关知识的内在联系,精心提供了一系列类比思维的素材,引导学生由此及彼,利用已有的知识,理解新学内容。例如,在讨论分数除法意义时,由整数除法的实际问题引入,通过将整数(单位:克)改写成分数(单位:千克),导出分数除法,以帮助学生理解分数除法的运算意义与整数除法相同。又如,引导学生联系比和除法、分数的关系,研究并得出比的基本性质。再如,教学比的应用时,呈现了整数问题的解法和分数解法,帮助学生理解两种解法的内在联系,促进知识的融会贯通,提高应用知识的灵活性。
(2)借助操作与图示,引导学生探索并理解分数除法的计算方法。
分数除法计算方法的探索与理解,历来是教学的'一个难点。教材根据小学生的思维特点,采用手脑并用、数形结合的策略,加以突破。
在教学分数除以整数时,例题设计了一个折纸活动,让学生通过动手操作,探索计算结果,并理解算理:把一个数平均分成几份,就是求这个数的几分之一。
在教学整数除以分数时,教材引导学生画出线段图,凭借图示,将新问题转化为已经解决的问题,进而得出计算方法。
(3)部分内容作了适当的精简或加强处理。
根据《标准》,本单元分数除法的计算不包括带分数,但注意在练习中适当穿插一些假分数。这样既保证了《标准》改革意图的落实,又能满足以后进一步学习时的计算需要。
此外,本单元教材专门设置了一道例题,以实际问题为载体,引出分数混合运算。同时也能使学生初步看到分数除法在解决一般实际问题中的应用,从而突破了原来只讨论分数除法典型应用题的局限,有利于增强学生的数学应用意识。
(4)调整了分数除法应用问题的编排,鼓励学生用方程解决问题。
本单元的第二节“解决问题”,专门讨论比较典型的分数除法实际问题。同时还将原来安排在分数、小数四则混合运算单元的两步计算的实际问题,移来一并学习。在解题方法的处理上,教材提倡抓住等量关系用方程解决问题。这样,由列出形如(a/b)x=c的方程,到列出形如x±(a/b)x=c的方程,思路统一,便于理解。而且衔接紧密,较为有效地降低了学习的难度,便于学生拾阶而上。
(三)教学建议。
1、充分利用教材,促进学习迁移。
如前介绍,本单元教材在揭示相关知识的内在联系,提供类比思维的材料方面,作了不少努力。教学时,应充分利用这些资源,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。
2、加强直观教学,结合操作和图形语言,探索、理解计算方法。
为了引导学生参与探索分数除法计算方法的过程,并能有所发现,有所感悟,教材设计了折纸与画图的教学活动。教学时,教师要用好这些直观手段,给学生动手的机会和较充分的时间,让更多的学生真正在操作、观察的过程中,凭借直观,发现算法,感悟算理。而要提高这些教学活动的有效性,还需要教师给予适当的点拨,引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。
3、抓住学习的关键,组织针对性练习。
我们知道,计算分数除法的关键步骤,是把除转化为乘;列方程解答分数除法问题的关键,则在于理解问题情境中的等量关系。因此,抓住这两个关键,组织开展针对性的专项练习,是提高学习成效的重要措施。教材中已经配备了一些这样的练习。教师还可从本班学生的实际出发,酌情加以增补,力求当堂巩固。
4、本单元内容可用13课时进行教学。
分数解决问题教案(篇5)
教材分析:
这部分内容是求一个数是另一个数的百分之几的应用题的发展。它是在求比一个数多(少)几分之几的分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。
学情分析:
用线段图表示题目的数量关系有助于学生理解题意,分析数量关系。再通过想帮助学生弄清,要求实际造林比原计划多百分之几,就是求多造林的公顷数是原计划造林公顷数的百分之几。然后鼓励学生寻找不同的解决方法,这样既开拓了学生的解题思路,又可以发展学生的思维能力。不断的改变题中的问题,使学生进一步加深对这类百分数应用题的认识,看到题里条件和问题之间的内在联系,同时也促进了学生逻辑思维能力的发展。
教学目标:
1、认识求比一个数多(少)百分之几的应用题的结构特点。
2、理解和掌握这类应用题的数量关系、解题思路和解题方法。
教学重点:掌握求比一个数多(少)百分之几的应用题的解题方法,正确解答。
教学难点:理解这类应用题的数量关系、解题思路和解题方法。
教具准备
小黑板
教学过程
教学设计补充(点评)
第一课时
活动(一)铺垫复习。
1、说出下面各题中表示单位1的量,并列出数量关系式。
(1)男生人数占总人数的百分之几?
(2)故事书的本数相当于连环画本数的百分之几?
(3)实际产量是计划产量的百分之几?
(4)水稻播种的公顷数是小麦的百分之几?
2、只列式,不计算。
(1)140吨是60吨的百分之几?
(2)260吨是40吨的百分之几?
3、一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
活动(二)相互合作,探究问题:
1、根据复习题第3题的题意,除了可以求实际造林是原计划的百分之几?还可以提什么问题?出示例3。一个乡去年原计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
2、讨论:
(1)这道题与上面的复习题相比较,相同的地方是什么?不同的地方是什么?
(2)根据线段图,这道题应该怎样思考、解答?
列式解答:
(14-12)12=2120.167=16.7%
答:实际造林比原计划多16.7%。
3、学生阅读课本,对照例3的解答,质疑问难。
4、想一想,例3还有其他解法吗?
可能出现1412-100%116.7%-100%=16.7%
5、思考:如果例3中的问题改成:原计划造林比实际造林少百分之几?该怎样解答?
(例3中的问题改成原计划造林比实际造林少百分之几后,单位1的量发生变化。改编后的应用题应把实际造林的公顷数(14公顷)看做单位1的量,要比较的量是原计划造林比实际造林少的公顷数。)
解答过程:
(14-12)14或者:1-1214
=2141-0.857
0.143=1-85.7%
=14.3%=14.3%
答:原计划造林比实际造林少14.3%。
活动(三)、巩固练习
1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位1。
(1)今年比去年增产百分之几?
(2)男生比女生少百分之几?
(3)一种商品,降价了百分之几?
(4)客车速度比货车慢百分之几?
(5)货车速度比客车快百分之几?
2、判断题。(对的在括号里打,错的打。)
(1)客车每秒行的路程比货车多1.2米,那么,货车每秒行的路程比客车少1.2米。()
(2)客车每秒行的路程比货车多10%,那么,货车每秒行的路程比客车少10%。()
板书:
分数解决问题教案(篇6)
教学目的:
(一)通过实践运动使门生理解“1个数是另外一个数的`几倍”的含意,领会数目之间的互相联络。
(二)使学生将“求1个数是另外一个数的几倍是多少”的实际问题转化为“求1个数里含有几个另外一个数”的数学题目的进程,初步学会用转化的法子来解决简单的实际问题。
(三)培育门生的合作意识,进步门生的探讨本领。
教学重点:
使学生将“求1个数是另外一个数的几倍是多少”的实际问题转化为“求1个数里含有几个另外一个数”的数学题目的进程,初步学会用转化的法子来解决简单的实际问题。
教学难点:
运用剖析推理将“1个数是另外一个数的几倍是多少”的数目瓜葛转化为“1个数里面含有几个另外一个数的除法含意。”
(1)二年级(二)班学习跳舞的有三人,学习绘画的人数是学习跳舞人数的二倍,学习绘画的有多少人?
a.抽生回答,并讲一讲思索进程;
b.请学习绘画的六位同学向人招招手,再汇报一下自己的学习成绩,老师向获得优良成绩的同学表示祝贺。
(2)二年级(二)班学习唱歌的有六人,学打乒乓球的是学习唱歌的三倍,学打乒乓球的有多少人?
(3)二年级(二)班学习弹琴的有四人,学吹号的是学习弹琴的四倍,学吹号的有多少人?
师:依据你摆的飞机,谁能提个题目让人人猜一猜?引出“求1个数里含有几个另外一数的除法含意”
(4).课件出示例题中小强提出的题目:“我摆了三架飞机,我用的小棒根数是小红的几倍?
(6).汇报效果,门生在动脑思索、充沛探讨中找到了“求1个数是另外一个数的几倍是多少”的解题思绪,即“求1个数是另外一个数的几倍”的含意,就是“求1个数里含有几个另外一个数”用除法计算。
(2).门生依据画面提出用除法计算的题目;
(3).依据所发问题,小组讨论解决方法;
(4).门生独立列式解答;
分数解决问题教案(篇7)
教学目标
知识与技能目标:理解生活中的百分率,掌握求百分率的方法,能正确求出百分率。过程与方法目标:通过自主探究、合作交流,理解常用百分率的含义及计算方法。情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并服务于生活的数学思想。
教学重难点
教学重点:理解生活中常见的百分率的含义。
教学难点:正确计算常见的百分率。
教学过程
一、创设情境,探究导入
1、课件出示
看图,回答下面的问题。
(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?
(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?
2、百分数的意义
我们班有36%的学生参加了美术兴趣小组。
世界总人口中大约有50%的人口年龄低于25岁。
一瓶农夫果园饮料中果汁含量大约是10%。
我们班学生的近视率是45%。
3、小刚做了10道题,错了2道
做对的题数占总题数的几分之几?
做错的题数占总题数的几分之几?
做对的题数占总题数的百分之几?
做错的题数占总题数的百分之几?
求a是b的百分之几和求a是b的几分之几方法是相同的,都是:a÷b
4、六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?
学生独立思考、同桌交流:尝试计算,得出结论。
5、谈话,导入新课
在我们的日常生活中像这样的百分率还有很多,如发芽率、及格率、出米率等,它可以帮助我们解决生活中的一些实际问题。
下面,让我们共同走进百分率,探究它的计算方法(板书:百分率的计算)。
二、学习新知
1、教学例1——在具体情境中认识百分率,探究计算方法
(1)出示例1:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。六年级学生的达标率是多少?
(2)学生读题,分析题意,思考达标率的含义,尝试计算。
(3)指名板演并交流思维过程,集体订正。
(4)教师小结
指导学生明确达标率是百分率的一种,它的含义即“达标人数是测试总人数的百分之几”,与“求一个数是另一个数的几分之几”问题的计算方法相同,因此用“达标人数÷测试总人数”就行;因为百分率是百分数,计算结果应是百分数形式,所以完整的计算方法应是“达标率=达标人数除以测试总人数×100%”。
谈话:《国家学生体质健康标准》要求小学生体质健康达标率不得低于60%,通过计算、比较,说明我们班学生的体质是达到健康标准的,这也是百分率的价值所在。
2、教学例2——掌握百分率计算方法,认识百分率的价值
(1)出示例2:科学课上,五(2)班同学做的种子发芽实验结果如下:
种子名称实验种子总数发芽数发芽率
绿豆80 78
花生50 46
大蒜20 19
(2)学生读题,弄清已知条件和问题,讨论发芽率的含义,尝试计算各种。种子的发芽率。
(3)指名学生交流发芽率的含义及计算方法,板演算式,集体订正。
(4)比较,认识发芽率在生产实践中的价值。
通过计算我们发现哪种。种子的发芽率要高一些?哪种要低一些呢?讲解:发芽率对于农民种田是十分重要的,他们需要根据发芽率的高低,决定种子品种和播种面积。
3、小组合作探究,寻找生活中的百分率,总结百分率计算公式。
(1)谈话,明确合作学习要求:在实际生活中,像命中率、达标率、发芽率等这样的百分率还有很多,请小组四位同学在一起开动脑筋、积极协作,寻找生活中的百分率,写出它的计算方法,比一比哪个小组找得最多。
(2)小组合作,寻找生活中的百分率,探究其含义及其计算方法,写出计算公式,教师巡视了解小组合作情况及结果。
(3)小组代表汇报本组收集的百分率,阐明其含义,在投影仪上展示计算方法,师生共同订正。
(4)罗列不同百分率的计算方法,引导学生发现共同点,总结百分率的计算公式:?率=量?除以总数量×100%
(5)举实例,加深对百分率计算公式的认识,掌握百分率计算方法。
4、某县种子推广站,用300粒玉米种子作发芽试验,结果发芽的种子有288粒。求发芽率。
5、探讨、交流:生活中的百分率哪些可能大于100%?哪些只会等于或小于100%?三、巩固练习
1、填一填
①稻谷的出米率是85%,是指()的千克数占()的千克数的百分之八十五。
②甲数是乙数的4/5,乙数是甲数的()%。
③20÷()= 4/8 =()︰24=()%
2、选一选:
种一批树,活了100棵,死了1棵,求成活率的正确算式是()。
一根钢管截成2段,第一段长米,第二段占全长的60%,这两段钢管比较()。
布置作业
1、小组合作,整理生活中常见的百分率的计算方法,写在数学书第86页上。
2、完成练习二十第2、3、4题。
四、课堂小结
今天你有什么收获?生谈收获。
师总结。
分数解决问题教案(篇8)
教学目标
1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百分率的含义。
2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。
3、培养学生的知识迁移能力和数学的应用意识。
教学重难点
解答求一个数是另一个数的百分之几的的百分之几的应用题。
教学工具
课件
教学过程
一、复习旧知:
1、某乡去年原计划造林12公顷,实际造林14公顷,实际造林是原计划的百分之几?
指名学生回答。
2、某乡去年原计划造林12公顷,实际造林14公顷,实际造林比原计划增加了百分之几?
指名学生回答。
二、相互合作,探究问题:
(一)初步感知
1、学生尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。
2、小结:“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。
(二)共同探讨
1、百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自“做对的题数占总题数的百分之几”这是你在这次口算比赛中的正确率,“做错的题数占总题数的百分之几”就是错误率。像这些正确率、错误率等我们通常称作“百分率”你能举一些我们日常生活中的百分率的例子吗?
2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
3、尝试解答例题:
(1)出示课本例1(1)的条件:
例1:六年级有学生160人,已达到《国家体育锻炼标准》的有120人?
(2)学生提出问题,尝试解答
三、运用知识,解决问题:
1、P86的“做一做”第1、2题
2、练习二十的第2题
四、全课总结
1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?
2、学生谈谈今天所学的知识在我们的日常生活中有什么用?
课堂总结
学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。
五、作业:
练习二十的第3、4题。
课后习题
练习二十的第3、4题。
分数解决问题教案(篇9)
1. 根据题意,看图写出代数式。
(1)苹果有x kg,西瓜的质量比苹果重1/4。
西瓜比苹果重kg,西瓜重()kg。
(2)鸡有x只,鸭的只数比鸡少1/3。
鸭比鸡少()只,鸭有()只。
2. 根据题意列出方程。
(1)六(1)班有15人参加了合唱队,占全班人数的1/3,六(1)班有多少人?
(2)美术小组的人数比航模小组多1/4,美术组的人数比航模组多5人。航模组有多少人?
出示例2。
1. 审题。
(1)看例题的插图,理解题目的意思。
复述题意,说说知道了什么,要求什么。
(2)分析题意,说说你对美术小组的人数比航模小组多1/4这一条件的理解。
(航模小组人数看作单位1,美术小组的人数多,多的人数相当于航模小组4等份中的1份。)
(3)理解数量关系,让学生自己试着画图表示两个小组的人数关系。(学生可以选用条形、线段或其他图形表示人数)
2. 分析、解答。
(1)出示线段图。
(2)说说数量关系。
根据已知条件美术小组的.人数比航模小组多1/4直接得出数量关系:
(3)学生根据得到的数量关系列方程解答。
(4)交流各自的解法。
(5)阅读课本,完成课本上的填空。
3. 改变例2。
出示:航模小组有20人,美术组的人数比航模小组多1/4,美术小组有多少人?
(2)根据图意解答。
(3)启发学生与例2进行比较,说说你发现什么?
(数量关系相同,已知条件与未知问题交换后,仍然可以根据例2的数量关系列式)
教师:上面用方程解例2的思路与分数乘法问题的思路统一,我们应该好好理解、掌握它。
4. 再次改变例2。
出示:美术小组有24人,美术小组的人数比航模小组少14,航模小组有多少人?
(1)根据题意改变线段图。
(2)改变方程,解方程。
5. 小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。
2. 根据条件列方程。
(1)小红买了一本书和一枝钢笔,书的价格是10元,正好比钢笔价格少3/8,钢笔的价格是多少元?
(2)白兔的只数比黑兔多2/3,白兔有450只,黑兔有多少只?
(3)白兔的只数比黑兔多2/3,白兔比黑兔多180只,黑兔有多少只?
分数解决问题教案(篇10)
分数除法的内容是在学生已经学习了倒数的认识、分数除法计算、分数乘法解决问题的基础上进行教学的。
成功之处:
沟通分数乘除法解决问题,加强知识的横向和纵向联系。在例2和例3的教学中重点梳理分数除法的数量关系:
在此类分数除法解决问题中,学生容易出现总数与份数、总数与每份数颠倒位置的情况。因此,加强分数除法解决问题的数量关系让学生明确谁是总数,谁是份数,谁是每份数。此外,还通过具体的例子来让学生进行辨别。如:榨1/4千克油需要4/5千克大豆,榨1千克油需要多少千克大豆?1千克大豆可以榨多少千克油?
在例4教学中,首先让学生先找出关键句中的数量关系,比如:小明的体重×4/5=小明体内水分的质量,然后再找出单位“1”,看一看是已知还是未知,已知用乘法,未知用除法或方程来解决问题。
不足之处:
1.个别学生仍然无法正确辨别分数除法解决问题中的总数、份数、每份数,导致列式出错。
2.学生在理解数量关系方面还存在一些问题,不能正确列出数量关系式。
改进之处:
1.对于数量关系式可以统一归纳为单位“1”的量×分率=对应量,加强理解对应量和对应分率之间的关系理解。
2.联系整数和分数解决问题进行对比,让学生加强整数和分数解决问题的区别与联系。
分数解决问题教案(篇11)
尊敬的各位老师:
大家好!
今天我说课的课题是《分数乘法—解决问题》(第一课时),这是人教版义务教育课程标准实验教科书六年级上册第2单元第2节的内容。根据新课标的理念,下面我将以教什么,怎样教,为什么这样教为思路,从教材分析(包括教材的地位与作用、教学目标,教学重难点)、学情分析、教法学法及教学手段,教学流程、时间安排和板书设计等六个方面谈谈我在处理这节课时的一些不成熟的想法:
一、教材分析:
(一)、教材的地位和作用
分数乘法这个单元是在整数乘法、分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百分数的重要基础。与整数、小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际的联系,培养学生应用数学的意识和能力。根据教材的编写思路,本单元把解决“求一个数的几分之几是多少”这一类问题组成“解决问题”一个小节,通过“专项”教学使学生更容易理解这类问题的数量关系,掌握解题思路。
(二)、教学目标
根据《数学新课程标准》对本教材内容的要求,结合六年级学生的特点,我制定了如下的教学目标:
1、知识与技能目标:
(1)在理解分数乘法意义的基础上,使学生学会分析乘法应用题的数量关系,
(2)借助线段图,能正确解答求一个数的几分之几是多少的实际问题。
2、过程与方法目标:
(1)在观察、猜想、尝试练习、交流反馈等活动中,培养学生的分析能力,发展学生思维。
(2)创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,合作交流。
(3)培养学生认真审题,仔细计算的好习惯。
3、情感与态度目标:渗透思想素质教育及丰富学生的基本常识,提高学生对数学学习的兴趣。
(三)、教学重难点:
“求一个数的几分之几是多少”,是具有特殊数量关系的问题,属于两个量相比的关系,帮助学生理解和掌握这类问题的基本思路,也就是如何根据分数乘法的意义、算理来解答自然成为本节课的重中之重,所以:
教学重点:分析应用题的数量关系,理解“求一个数的几分之几是多少”用乘法计算的算理
因为本节课涉及的这类数量关系比较特殊,找到两个相比较的量,关键是弄清哪个量是单位“1”,要求的量是单位“1”的几分之几,再根据分数乘法的意义解答。所以:
难点:正确找准单位“1”所对应的量
二、学情分析
六年级学生刚刚进入初中,年龄特点决定了他们对新事物有极强的好奇心,求知欲旺盛,主观能动性极易被调动,同学之间又善于合作和交流,本节的内容又建立在刚刚学过的分数乘法的基础上,所以在教学时,教师可以创设现实情景,提出数学问题,突出自主探索和合作学习,让学生在已有知识的基础上,自主建构新知识,理解算理,分析数量关系,寻找解决问题的思路。
三、教法学法及教学手段:
教师可以为学生创设一种问题背景下的探索活动,使学生在一种动态的探索过程中自己发现解题方法,从而体验成功的快乐,感受数学的思想方法。基于以上思考,以“自主学习”贯穿全课,引导学生迁移旧知、大胆尝试、质疑讨论、挑战闯关等,把“过程性目标”凸显出来,另外借助现代多媒体教学手段充分体现出新课标理念中数学感知的直观性原则,提高课堂容量,让学生在发现中体会到数学学习的其乐无穷,同时受到良好的国情教育。
四、教学流程:
根据本节教材内容的特点及学生的认知水平,我制定了以下六个教学环节:
(一)、复习质疑、引新
1.口算、的结果并说出算式的意义。
2.列式计算:
20的是多少?6的是多少?
学生完成后,可请同学说一说这两个题为什么用乘法计算?
(导入)同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(板书课题)
设计意图:承上启下,以旧引新。
(二)、引入新知—探究解法
例1的教学:(屏幕展示)
学生读题,找出已知条件和要解决的问题,在理解题意的基础上指导学生画线段图。根据“我国人均耕地面积仅占世界人均耕地面积的”这个条件,应该把这条线段平均分成几份?怎样表示?根据以上数量之间的关系,这道题应该怎样列式?根据什么?(请一学生板演,其他学生尝试自己画图,教师巡视)对照板书,把不正确的地方改正过来。
学生可能会出现下面解答方法:
解法一:世界人均耕地面积是单位“1”,把单位’“1”平均分成5份,我国人均耕地面积占了2份,先求出一份是多少平方米,再求出2份是多少平方米,即我国人均耕地面积是多少平方米。列式解答:2500÷5×2=1000(m2)
解法二:根据分数乘法的意义,我国人均耕地面积占了世界人均耕地面积的,是占了2500 m2的,所以把2500看作单位“1”,要求我国人均耕地面积是多少,就是求2500的是多少,根据一个数乘以分数的意义,所以用乘法计算:2500× =1000(m2)
设计意图:这里主要是通过学生自主探索和合作交流的方式得出,同时不给固定的思考模式,学生可以从不同的角度思考,只要合理就应该肯定。
师:同学们,看到了这个结果,跟世界人均耕地面积2500m2相比,你们有什么感受吗?该怎么办呢?能说说你们的想法吗?(适机让学生看看课本是怎么说的,以快速达到学习教育的效果)【渗透思想素质教育和增长学生的基本常识】
(三)、跟踪训练—深化知识
1、动口填一填:
⑴表示()的()
⑵表示把()看作单位“1”,平均分成()份,共有这样的()份
⑶某班有男同学25人,女同学人数是男同学人数的,这里把()的人数看作单位’1”,求女同学有多少人,就是求()的()是多少,列式是()
⑷甲的工作效率的相当于乙的工作效率,这里把( )的工作效率看作单位“1”,()的工作效率占。
2、动手做一做:课本练习四第2、3题、17页“做一做”
3、小林身高米,小强身高是小林的,小强身高多少米?
设计意图:这一环节的设计意图是反馈教学,内化知识。几道练习题配合新课设计,与例题形式类似,结合这些练习帮助学生进一步巩固解决“求一个数的几分之几是多少”这类问题的思路和方法。
(四)、归纳小结
(学生谈,教师补充,强调。)我们在解答“已知一个数,求它的几分之几是多少?”这种类型的分数乘法应用题时,首先要找准题中的单位“1”所对应的量,然后再根据分数乘法的意义列式计算
设计意图:帮助学生对本节课内容进行梳理,进一步突出重点,解决难点。
(五)拓展练习提高解题能力
1、海象的寿命大约是40年,海狮的寿命是海象的,海豹的寿命是海狮的。海豹的寿命大约是多少年?
(学生默读题目,再独立或合作交流思考)
师:这道题,谁和谁比较?如何找单位“1”?谁来说说你是如何理解分析的?
(老师适机合作,学生自主解答)
2、练习四第10题
设计意图:这个环节安排的第一个练习题是连续求一个数的几分之几是多少的题目,这类练习有利于加强学生对解决这类问题数量关系的理解和分析,培养学生分析判断和推理能力,可借助线段图帮助学生分两步分析数量关系,抓住第一步求什么,谁是表示单位“1”的量;第二步求什么,谁是表示单位“1”的量,分步列出算式,计算出结果,在分步列式的基础上,引导学生列成连乘的综合算式。第二个练习题是个思考题,供学有余力的学生做,与整数中求比一个数的几倍多几的问题思路相同。
(六)、作业布置:
另:预习课本20页至21页的内容,尝试解决下列问题:
①一桶油400千克,用去,用去多少千克?还剩多少千克?
②一桶油400千克,用去吨,用去多少千克?还剩多少千克?
五、时间安排:
复习质疑、引新(3分钟左右);引入新知—探究解法(8分钟左右);
跟踪训练—深化知识(10分钟左右);归纳小结(2分钟左右);
拓展练习提高解题能力(10分钟左右);作业布置:(7分钟左右)
六、板书设计:
例1的两种思路线段图:投影屏幕
学生板演区
以上是我对这节课的教学的看法,希望各位老师指正。谢谢!