七年级上数学课件

七年级上数学课件。

编者特意整理了关于“七年级上数学课件”的一些资讯,接下来详细进行介绍。制作教案课件是老师的一项重要工作,所以每天老师都会按照要求准时准备好教案课件。而制定教案需要深入了解学科的特点和教学规律。希望您能继续阅读下文,获取更多相关资料!

七年级上数学课件 篇1

教学内容

义务教育课程标准实验教科书人教版《数学》 二年级上册第三单元第38-39页例1-例2.

设计思路

1.指导思想

《角的初步认识》这节课是在学生已初步认识长方形、三角形、正方形的基础上进行教学的。它们与实际生活有密切的联系,我们周围很多物体上有角。因此,让学生通过实践操作活动,在初步感知角的基础上进一步认识角、了解角的特征。

2.设计理念

通过学习,使学生初步认识角,知道角的各部分名称,会用不同的方法画角和比较角的大小。通过感知角 —找角—摸角—画角—分辨角—做角、玩角—创造角等操作活动,给学生提供“做数学”的机会,让学生在动手操作、合作交流中体验成功的喜悦。

3.教材分析

这节课是人教版《数学》 二年级上册第三单元第一课时内容,教材从引导学生观察生活中的角及实物开始逐步抽象出所学图形的角,再通过实践操作活动加深对角的认识,使学生建立角的表象,为下节课认识直角做好准备。同时,这部分知识发展学生的空间观念,想象力和操作能力。

4.学情分析

在初步感知角的基础上,通过实践操作,获取直接经验,为形成角、直角的空间观念奠定基础。

教学目标

知识与技能:结合生活情境,使学生初步认识角,能够识记和理解各部分名称,会用不同的方法画角和比较角的大小。

过程与方法:通过观察,操作等数学活动,培养学生的观察能力、实践能力、抽象能力,建立初步的空间观念,发展学生的形象思维。

情感、态度、价值观:通过实践活动,使学生获得成功的体验, 建立自信心,感悟生活与数学的密切联系,激发学习数学的兴趣。

教法与学法

教法:尝试指导法。

学法:动手实践,自主探究。

教学重点、难点

重点:根据角的特征辩认角。

难点:角的大小与边的长短没有关系。

教具准备

课件、三角板、图钉、硬纸条、剪刀、扇子等。

学具准备

三角板、硬纸条、图钉、圆形纸片、长方形纸、剪刀。

教学过程

一、创设情境,激趣导入

师:同学们猜猜我们这节课将要学什么?

生1:可能与角有关。

师:你是怎么知道的?

生1:因为老师让我们带了三角板,我想可能与角有关吧。

……

师:在生活当中你看到过或听说过哪些角吗?

生2:硬币上有角。

生3:红领巾上有角。

生4:三角板上有角。

……

师:硬币上的角和我们今天学的角可不一样,我们今天要研究的角是数学意义的角,数学中的角究竟是怎样的呢?我们一起到校园里去看看吧。

【设计意图:从学生的生活经验出发,创设问题情境,让学生感受到数学就在我们的身边,激发学生求知的欲望。】

二、初步感知,探究新知

(课件出示主题图)新的一天开始了,校园里早早就热闹起来,操场上更是生机勃勃,你们看到了什么?这里面有角吗?先说给你的同桌听一听,然后说给同学们听。

生1:老师拿的三角板。 生2:老爷爷修剪花木用的剪刀。

生3:小朋友做操时伸的直直的双臂。

……

师:真是一群善于观察的好孩子。是啊,角在我们的生活当中无处不在,这节课我们就一起来认识这位“新朋友”。(板书:角的初步认识)

三、自主探索、感悟新知

1.联系实际,感知角

师:角特别喜欢玩捉迷藏的游戏,老师带来了几幅图,你们能找出来吗?课件出示钟表、剪刀、饮料吸管、窗户等图片,指几名学生找角,根据学生的回答屏幕上的红色线闪烁显出角。

师:同学们的眼睛真亮啊,把藏在物体里的角都找出来了。

2.找生活中的角

师:其实我们的身边还有很多角,仔细观察你就会发现周围哪些物体表面也藏有角?把你找到的角指给同桌看一看.(生活动)

师 :谁愿意把你找到的角与大家一起分享?

生:黑板上、桌子上、数学书上、窗户上……

师:你们真是生活中的有心人!角在我们的生活中真是太广泛了,只要你们用数学的眼光去观察,就能发现更多的角。

【设计意图:让学生从生活中发现角、认识角并从实例中抽象出角的图形,建立角的表象,体会到生活中处处有数学的思想,获得用数学的体验。】

3.摸角(认识数学中的角)

师:请同学们拿出三角板,先摸一摸再看一看角是怎样的?

生1:角的前面尖尖的,旁边直直的。

生2:它是由两条直线组成。

师:嗯,观察得很仔细,现在请同学们用角尖尖的地方在手心扎一下,看看手心上留下了什么?

生:一个小圆点。

师:它是角的一个组成部分,数学家给它起了个名字叫“顶点”,课件出示小圆点,这就是一个角了吗?

生:不是,还有两条直直的线。(演示)

师:这两条直直的线,数学家也给它起了个名字叫“边”。这就是数学王国中的“角”,让我们给刚才这些实物脱掉美丽的外衣,就变成这样。(课件隐去实物图出现几个大小不同的角)请仔细观察,这些角有什么相同的地方?

生:他们都有一个顶点两条边。

师:也就是说角是由一个顶点两条边组成的。

4.画角

师:刚才我们已经认识了角的特征,你们会画角吗?课件演示画角的过程。

师:请拿出三角板,按刚才的方法画一个自己喜欢的角。

指几名生上黑板画,画好后让生评价。

5.分辨角

师:现在请同学们闭上眼睛想一想角是怎样的?帮我辩一辩哪些图形才是角家族的朋友?

下面图哪些是角?哪些不是角? 为什么?

《角的初步认识》教学设计《角的初步认识》教学设计《角的初步认识》教学设计

《角的初步认识》教学设计《角的初步认识》教学设计

生辨认并说理由

师:了不起的小法官!刚才同学们已经会画角了也会辨认角了,你们会做角吗?

6.做角玩角

拿出准备的硬纸条和图钉开始做角吧,做好以后再玩一玩看谁的角大谁的角小?(生活动并玩角)

师:说说看,你们发现了什么?

生:两根塑料带张开一些角就越大,合拢一些角就越小。

师:怎样用数学语言说呢?

根据学生的回答归纳:角的两边拉开的大角就大,角的两边拉开的小角就小。

师:你们真会发现。老师也带来了两样东西请看看吧,出示扇子、剪刀演示。

课件出示:角的大小与什么有关?

小结:角的两边张开的大角就大,角的两边张开的小角就小。

7.猜角

《角的初步认识》教学设计师:看看谁能猜出这两个角的大小?

《角的初步认识》教学设计

师:究竟谁大?生猜后课件动画演示两个角的顶点和边重合,发现角一样大。

小结:角的大小与边的长短没有关系,而与角的张口大小有关。

8.创造角

师:刚才同学们对角已经有了很深的了解,那么你们会创造角 吗?请拿出准备的圆形纸片,看看用哪些方法可以创造出角?

(生活动,有折、有剪、有撕、有画……)全班欣赏评价。

【设计意图:练习融趣味性、创造性于一体。通过实践活动,使学生亲历探究的过程,激发了学生的'想象力,培养他们的动手操作能力和思维能力。】

四、巩固拓展

师:看同学们表现得这么出色,老师想考考你们,敢接受挑战吗?

1.下面的图形个有几个角?

《角的初步认识》教学设计《角的初步认识》教学设计《角的初步认识》教学设计

《角的初步认识》教学设计《角的初步认识》教学设计

2.摆一摆两根小棒能摆出几个角?三根呢?你们能用自己的身体表示出一个角来吗?

3.一张长方形的纸有几个角?如果剪掉一个角还有几个角? 【设计意图:通过层次深度的练习设计,既培养学生运用知识解决实际问题的能力,又发展了学生的思维。】

五、升华主题,欣赏美

师:同学们角不仅在数学中被广泛应用,古今中外许多建筑都利用了角的特性,下面就让我们一起来感受他们的神奇魅力吧。

(伴随悠扬的音乐欣赏古建筑)

【设计意图:欣赏古代建筑,提高了学生的审美能力,感受到几何图形的美,增强热爱数学、学好数学的信心。】

六、总结全课

1.这节课你对自己的表现满意吗?对老师满意吗?

2.通过这节课的学习你有哪些收获? 生畅所欲言

师:这节课同学们不仅认识了角的形状,知道了角有一个顶点, 两条边,还学会了画角。今后,我们将会学习更多关于角的知识,在角的王国里探究更多的奥秘。回家以后,找一找家中的角说给你的爸爸妈妈听,好吗?

【设计意图:让学生自我评价和对老师的评价,凸显个性,展现自我,增强自信,培养学生学习数学的能力。】

教学反思

反思这节课,我能努力实践着新课程的理念。这节课的尝试主要体现以下几方面的特点:

⑴关注生活经验,重视实践操作,让学生经历角的含义的形成过程,激发学生学习的兴趣。本节课先让学生说说在生活当中看到过或听说过哪些角,充分调动学生的生活经验,然后在找角—摸角—画角—分辨角等活动中建立了角的表象,丰富了对角的认识,真正体现了“让学生亲身经历,将实际问题抽象成数学模型的过程”这一基本理念。使他们在“做数学”的过程中不仅获取了知识,培养了动手操作能力,还发展了学生的思维,使他们在亲历的过程中感受到学习的乐趣。

⑵充分发挥学生的主体作用,及时评价学生的学习成果。

在教学过程中,教师向他们提供充分的从事数学活动和交流的机会,帮助他们在自主探索的过程中真正理解和掌握角的基本特征,突出学生的主体地位。及时评价学生让他们一起体验成功的喜悦,使他们真正成为学习的主人。

⑶利用学具和多媒体等教学手段,调动学生的多种感官,强调数学学习的实践性、探究性和趣味性,注重了学生的情感体验和个性发展。提高了学生的审美能力,感受到几何图形的美,最大限度发挥学生积极参与学习的过程,从而使课堂真正焕发生命活力。

不足:

⑴时间把握不够准确,预设的活动没有按时完成。

⑵教师的教学语言不够精练。

七年级上数学课件 篇2

(1)本节的重点是会用两直线垂直的定义判定两条直线垂直和点到直线的距离的概念.两直线垂直的定义中虽然强调“有一个角是直角”,但实际上由对顶角和邻补角的性质,可以得到其他三个角也都是直角,因此不指定哪一个角是直角,实际上无论哪一个角是直角,都可以判定两直线垂直.反过来,已知两直线垂直,那么它们的四个交角中无论哪一个角都是直角.对于点到直线的距离,一定要给学生强调距离是垂线段的长度,是一个数量,而不能误认为是垂线段本身.

(2)本节的难点是空间直线与平面、平面与平面的垂直关系.因为初一学生的空间想象能力比较差,想象不出什么情况下直线与平面、平面与平面垂直.教科书是学生在对长方体已有认识的基础上,通过进一步的观察分析,得出结论,对于这些结论,只要求学生有感性认识,不要求学生掌握,所以老师不要深挖.

(1)本节仍用上节用过的相交线模型作演示(也可用我们提供的课件),在让学生观察模型时,不要只让学生看热闹,而要让他们带着问题去看,可以提出如下两个问题:(1)转动木条b时,它和不动木条a互相垂直的位置有几个?(认识垂线的唯一性);(2)当a、b相交有一个角是直角时,其他三个角也都是直角吗?然后找学生回答,以此来增加学生对两直线垂直的感性认识.

(2)对于空间里直线与平面、平面与平面垂直的知识是要求学生了解的内容,不是重点但是难点,因为此时学生的`空间想象力差,不容易想象它们垂直的情形,为了突破这个难点,

我们做了一个课件,这个课件把直线与平面、平面与平面垂直的情况,更直观的展现了学生,帮助学生对此知识的理解.

1.使学生掌握垂线的概念。

2.会用三角尺或量角器过一点画一条直线的垂线。

3.使学生理解并掌握垂线的第一个性质。

1.通过对垂线定义做正、反两方面的推理,培养学生的逻辑推理能力。

2.通过垂线的画法,进一步培养学生的实际动手操作能力。

使学生初步树立辩证唯物主义观点。

(四)通过垂线,使学生进一步体会到几何图形的对称美。

通过创设情境,引导学生主动发现性质,并运用练习加以巩固.

投影仪、三角尺、量角器、自制胶片.

1.通过创设情境,复习基础知识,引入课题.

2.通过教师引导提问,学生思考、互相叙述和纠正,教师点拨,练习巩固新课.

通过画垂线,使学生既能理解并掌握垂线的概念和第一个性质,又能提高学生的动手操作能力.

以情境引入课题,以引导学生讨论思考、动手操作和教师点拨相结合完成教学任务,以练习检测为巩固检查手段,强化教学内容.

提出问题:如右图,(1)∠AOC的对顶角是哪个角?这两个角的关系怎样?

七年级上数学课件 篇3

今天我将要为大家说的课题是:有理数的加减法第一课时

首先,我对本节教材进行一些分析

㈠教材结构与内容简析

本节内容在全书及章节的地位:略

㈡教学目标:

1.知识与技能:

使学生掌握有理数加法法则,并能运用法则进行计算;

2.过程与方法:

在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力

3.情感态度与价值观

通过师生合作,联系实际,激发学生学好数学的热情,感受加法无处不在,无处不有。

㈢教学重点:有理数加法法则。

㈣教学难点:异号两数相加的法则。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

㈤教法

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,

我在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点,应着重采用活动探究式的教学方法

㈥学法

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

1、理论:记忆加法法则;

2、实践:足球赛记分动笔动手;

3、能力:加法运算能力

㈦教学准备:课件或章前足球赛图

㈧教学设计:

一、创设情景,孕育新知

活动一:观摩足球赛:

足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了2球,那(3)(2)=5.①

(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)(-1)=-3.②现在,请同学们说出其他可能的情形.

答:上半场赢3球,下半场输2球,全场赢球,也就是

(3)(-2)=1;③

上半场输了3球,下半场赢了2球,全场输了1球,也就是

(-3)(2)=-1;④

上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

(3)0=3;⑤

上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)0=-2;

上半场打平,下半场也打平,全场仍是平局,也就是

00=0.⑥

二、自主探究,获取新知

活动二:现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?

这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数。

活动三:

应用举例变式练习

例1计算下列算式的结果,并说明理由:

(1)(4)(7);(2)(-4)(-7);

(3)(4)(-7);(4)(9)(-4);

(5)(4)(-4);(6)(9)(-2);

(7)(-9)(2);(8)(-9)0;

(9)0(2);(10)00.

学生逐题口答后,教师小结:

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

解:(1)(-3)(-9)(两个加数同号,用加法法则的第2条计算)

=-(39)(和取负号,把绝对值相加)

=-12.

活动四:教学22页例1、例2(详见课本)

三、巩固练习,运用新知

活动五:练习:23页1.2

四、归纳小结,升华新知

同学们分组讨论,学习了哪些知识?并交流。

有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

五、回归实践,再用新知

作业:31页:课外作业选做

针对学生素质的差异进行分层训练,既使学生掌握基本知识,又能够使学生获得基本技能!

七年级上数学课件 篇4

(一)让学生更理解数学。如前文所说数学教学的目的是提高学生逻辑思维能力和思考能力。变式指在数学本质基础上通过其他方式和方法呈现数学内容。如一种数学题目在不同试卷上可以用不同方法表示,也可以通过不同方法解决。虽然解决一道数学题目的方法很多,但是题目考验学生能力的内容是一致的,即在本质上解答问题的思路是一致的,并且使用的数学公式是不变的。通过变式教学方法可以让同学更了解数学题目,即不停留于一种题型,让学生在了解公式的基础上灵活解决同类型题目。有句话一直牢记在我心中:要活学并活用。变式教学就是教会我们活用的技巧,让我们更好地解决问题,并在解决问题的同时提高自身能力。

(二)提高答题效率,减轻学生压力。目前学生压力大,课后作业占据学生大部分放松时间。学生在课后作业上面花费的时间越来越多,是因为课后作业不断增多还是因为学生不会做题而无法快速完成?这个问题的答案从优秀学生和后进学生身上可以反映出。学习好的学生几乎在学校就可以基本完成老师布置的作业,回家后还利用休闲时间对所学内容进行复习或者做自己买的练习,甚至可以挤出时间看课外书。但是成绩差的学生可能回家做了几个小时的作业还没有完成老师布置的作业,更别说做自己购买的练习或者看书复习了。这是什么原因?因为成绩不好的学生对学习的知识还不是很了解,并且不会灵活运用,他们只会做上课老师所讲的题目,如果让他们解与老师所讲的题目做法相同但是条件不一样的题目可能仍无法解决或者需要花费很久时间。这种情况下最好的解决办法就是运用变式教学,在学生了解教学内容基本概念之后给学生不断练习不同的题型,只有不断解题之后学生才可以牢记所学知识,并且能够活用,而且日后学习中还要不断练习和巩固。但是在变式教学运用上需要注意以下几点:第一,根据学生正常学习新内容的能力给学生安排合适练习;第二,加强学生对专业性概念的理解,只有在学生理解数学概念的基础上才可能运用概念,如果对概念都无法理解几乎无法解决那一类题目;第三,在学生学习新知识时,教育者可以把该知识与学生之前所学的知识相联系,让学生通过对旧知识的巩固学习新知识,容易理解和掌握现在要学习的知识。变式教学是保持数学题目中原有的实质,对题目进行改变并通过不同方式展现出的一系列问题变化,通过这样教学可以提高学生对知识的掌握程度,轻松地运用所学知识举一反三,快速解答问题,在很大程度上提高学生解题效率,并且减轻学生的学习压力。

变式教学通过不改变题目基本知识点而改变题目题型为学生学习提供开放性的条件,让学生通过各方面研究和多角度思考解答该题目。在很大程度上提高学生的逻辑思维能力,让学生的反应更灵活,增强他们对做题的自信,并且更喜欢学习。在变式教学中,教育者可以给学生提供更多数学练习,在不同数学练习中学生只有不断研究、不断对比,并且愿意主动去思考、去提问,才可以不被其他同学比下去。但是做题时学生不应该死板,在做题前应思考今天学习了什么知识,并与之前所做的题目相比较。在不断练习之后,他们会发现题目想要考查的知识点是相同的,只是题型不同而已。经过对不同题型的练习和思考,提升学生的解题速度,让学生了解一道题目可以用不同方法解决,很好地提高逻辑能力。

(一)变式教学的运用时机。进行变式教学时教育者应该选择合适的时间,就是在学生初步了解一项数学知识之后。刚教完数学概念后,学生对该条概念还不是十分了解,这个时候教育者就需要让学生练习不同题目对该项知识加以深刻了解和巩固。需要注意的是老师给出的题目应当从简单到复杂、从小到大。这样可以让学生一步步详细了解概念,而不是一开始就给学生难题让学生花费过多时间解决,结果可能就是学生无法做出该题目,并且对概念的理解还和之前一样,那么这将是无用功。

(二)改变问题的条件。在学生解决一个问题之后老师可以适当改变问题中的条件让学生练习。如证明一个四边形是平行四边形,我们知道证明一个图形是平行四边形有许多种方法,如证明两组对边平行或者一组对边平行且相等,如果在一道证明题中该题之前的条件为一组对边平行且相等,那么我们可以转变为两组对边平行,结论还是该四边形是平行四边形。但是改变条件后是运用了另一个原理证出平行四边形,不仅巩固学习内容,还让学生了解到问题的解决可以采取多种方法。对学生解决其他问题运用多种办法有促进作用。变式教学是通过不同方法、不同角度等反映出教学中的基础问题。通过变式教学不断提高学生的逻辑思维能力、应变能力和创新能力,并且有力地开发学生的潜能,让学生更热爱学习,同时减轻学习压力。可以说目前教学中变式教育是一种重要的教学方法,并且取得一定的成果。

七年级上数学课件 篇5

一、教材分析

“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。如果没有透彻理解这部分知识,就很难学好整个一章内容。

二、教学目标

1、理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念。

2、认识并能画出平面直角坐标系。

3、能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置。

4、理解各个象限内的点的坐标的符号特点以及坐标轴上的点的坐标特点。

1637年,笛卡尔在他写的《更好地指导推理和寻求科学真理的方法论》一书中,用运动着的点的坐标概念,引进了变数。恩格斯在《自然辩证法》高度评价笛卡尔,称其将辩证法引入了数学。因此,在讲授平面直角坐标系这一部分内容时,应对学生进行运动观点、坐标思想和数形结合思想等唯物辩证观方面的适当教育。

三、重点难点

1、教学重点能在平面直角坐标系中,由点求坐标,由坐标描点。

2、教学难点:

⑴平面直角坐标系产生的过程及其必要性;

⑵教材中概念多,较为琐碎。如平面直角坐标系、坐标轴、坐标原点、坐标平面、象限、点在平面内的坐标等概念及其特征等等。

四、教法学法

本节课以“问题情境──建立模型──巩固训练──拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。教无定法,贵在得法。本节课中对于不同的内容应选择了不同的方法。对于坐标系的产生过程,由于是本节课的难点,可采用探索发现法;对于坐标系的相关概念,由于其难度不大,且较为琐碎,学生完全有能力完成阅读,因此可采用指导阅读法;对于由点求坐标、由坐标描点,由于是本节课的重点内容,应采用小组讨论和讲练相结合的方法。教给学生良好的学习方法比直接教给学生知识更重要。

数学教学是师生之间、学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在教学中要不断指导学生学会学习。本节课先从学生实际出发,创设有助于学生探索思考的问题情境,引导学生自己积极思考探索,让学生经历“观察、类比、发现、归纳”过程,以此发展学生思维能力的独立性与创造性,使学生真正成为学习的主体,从“被动学会”变成“主动会学”。教学时先让学生观察数轴上(一维)的点与实数之间的一一对应关系,在生活中确定平面内(二维)的点的位置的方法,再与数轴上的点加以类比,从而引出平面内的点的表示方法,同时在学习中体会数形结合的思想。为了提高课堂教学的效益,本节课将借助于多媒体课件与实物投影仪进行教学。

七年级上数学课件 篇6

2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。[]

3、在教学中适当渗透分类讨论思想。

问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)

教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(-5)+(-3)=-8(m)

师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。

教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?

学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(-3)=2(m)

师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得零。

教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?

学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。

一般地,还有一个数同0相加,仍得这个数。

注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。

课本P24习题1.3第1、7题。

[知识与技能目标]

1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

[过程与方法目标]

限度的发挥学生的主体参与,让学生在教师的引导启发,师生的交流与探索下,轻松愉快地学到新知识。

[情感态度与价值观]

借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想,让学生采取自主探索,合作交流的学习方式。

借助数轴引出对绝对值的概念,并通过计算、观察、交流、发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

字母,多鼓励学生通过观察、归纳、验证。

[课件展示,激趣感知]

博物馆、农场到学校与学校到博物馆农场的距离的关系。

[媒体展示课件,认知生活中的有些问题]

不考虑相反意义,只考虑具体数值。

[创设情境,实例导入]利用动画展示,让学生在有趣的图画中感受绝对值激发学生的兴趣。

实物的形象符合学生心理,学生兴趣很高,踊跃发言,95%的学生能顺利的解决问题。

[提出问题,引发讨论]

1、引导学生得出绝对值定义及表示方法。

2、同桌之间互相举例。

归纳绝对值概念,教师指出表示方法。

[师生互动、探索新知]:学生根据情境感知初步认知绝对值,并通过对其概念的理解求解一个数的绝对值。

同桌之间举例,效果良好,体现了“自主——协作”学习。

1、想一想互为相反数的两个数的绝对值有什么关系?学生举例,并进行观察、比较、归纳。

2、议一议一个数的绝对值与这个数有什么关系?小组讨论、交流教师引导学生用自己的语言描述所得结论教师质疑:一个数的绝对值是否为负数?学生通过分析理解绝对值的内在涵义。

学生分析各类数的绝对值与本身的关系,并对教师的质疑进行深究。

[趣引妙答,思路点拨]通过学生举例思考,对互为相反数的两个数的绝对值进行观察对比,从而得到它们的关系。

学生从“特殊——一般”分类归纳绝对值的代数意义,并通过归纳总结出绝对值的内在涵义,体现学生的主体性。

积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解。

学生通过自主探索最终找到两个负数比较大小的方法,绝对值大的反而小。

师生归纳两页数比较大小的两种方法。

[探索用绝对值比较两负数的方法]

旧知识的引用,让学生在轻松愉快的环境中获取新知,从已有知识逐渐到新知识,不但可激发学生的兴趣,并且培养学生的探索精神,同时分解了本节的难点。

从旧知识层层引入,学生兴趣十足,提高了教学效果,突破了难点,学生接受轻而易举。

[绝对值比较两负数大小的运用]

[变成训练,巩固反馈]

继续对绝对值比较负数大小进行巩固练习。

由以上练习层层深入,学生解决问题的能力大大提高,并且印象深刻。

[学生探究,教师点拨]

[媒体展示]

绝对值定义,代数意义及内在涵义的的灵活应用。

[知识延伸,目标升华]

充分发挥学生的自主探索能力,使学生能够深入、细致的理解知识点。

学生能够互相评点,共同探索,既发展了自主学习能力,又强化了协作精神。

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、 教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

展开教学。

3、教学评价方式:

动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,

揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

(1)原式的特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答] 总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答] 完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

(m+n)2=____________, (m-n)2=_______________,

(-m+n)2=____________, (-m-n)2=______________,

(a+3)2=______________, (-c+5)2=______________,

(-7-a)2=______________, (0.5-a)2=______________.

2、判断:

① (x+y)2 =______________;② (-y-x)2 =_______________;

③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

〈四〉、[学生小结]

你认为完全平方公式在应用过程中,需要注意那些问题?

(1) 公式右边共有3项。

(2) 两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、冒险岛:

(1)(-3a+2b)2=________________________________

(2)(-7-2m) 2 =__________________________________

(3)(-0.5m+2n) 2=_______________________________

(4)(3/5a-1/2b) 2=________________________________

(5)(mn+3) 2=__________________________________

(6)(a2b-0.2) 2=_________________________________

(7)(2xy2-3x2y) 2=_______________________________

(8)(2n3-3m3) 2=________________________________

[小结] 通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛

2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.

1.指出右图中所有的邻补角和对顶角?

2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?

若都不是,请自学课本P6内容后回答它们各是什么关系的角?

1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成“直线 和直线 与直线 相交” 也可以说成“两条直线 , 被第三条直线 所截”.构成了小于平角的角共有 个,通常将这种图形称作为“三线八角”。其中直线 , 称为两被截线,直线 称为截线。

(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如“ ” 字型.具有这种关系的一对角叫同位角。

(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫内错角。

(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫同旁内角。

4.讨论与交流:

(1)“同位角、内错角、同旁内角”与“邻补角、对顶角”在识别方法上有什么区别?

(2)归纳总结同位角、内错角、同旁内角的特征:

例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?

小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;

两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;

⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.

⒊如图⑹, 直线DE截AB, AC, 构成八个角:

① 指出图中所有的同位角、内错角、同旁内角.

②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?

⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.

10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

二.基础过关题:

1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。

又∵∠C=∠D ( 已知 ),

∴BD∥CE( )。

2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。

∴∠B + ∠F =180°( )。

3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.

1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛

2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角

教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.

学生欣赏图片,阅读其中的文字.

师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.

握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.

(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流.

∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.

∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.

( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.

(3).概括形成邻补角、对顶角概念.

有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.

1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

一、判断题:

1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )

2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )

二、填空题:

1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.

2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.

三、解答题:

1.如图,直线AB、CD相交于点O.

(1)若∠AOC+∠BOD=100°,求各角的度数.

2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?

七年级上数学课件 篇7

一、学生起点分析:

通过前几节解方程的学习,学生已经掌握了解方程的基本方法.在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到一下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能列出方程.

二、教学任务分析:

本课以“等积变形”为例引入课题,通过学生自主探究、协作交流,教师点拨相结合的方式,引导学生动手操作的方法分析问题,体会用图形语言分析复杂问题的优点,从而抓住等量关系“锻压前的体积=锻压后的体积”展开教学活动,让学生经历图形变换的应用等活动,展现运用方程解决实际问题的一般过程.因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性.

三、教学目标:

知识与技能:

1、借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接与间接设未知数的解题思路,从而建立方程,解决实际问题.

2、通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题意.

过程与方法:通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力.

情感态度与价值观:通过对“我变胖了”中的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.

四、教学过程设计:

环节一 创设情景,引入新课

内容:同学们自己预习的基础上,用已经备好的橡皮泥,自制“瘦长”与“矮胖”的圆柱,观察分析个中现象.

考虑几个问题:

1、 手里的橡皮泥在手压前和手压后有何变化?

2、在你操作的过程中,圆柱由“瘦”变“胖”,圆柱的底面直径变了没有?圆柱的高呢?

3、在这个变化过程中,是否有不变的量?是什么没变?

目的:让学生在玩中体会等体积变化的现象中蕴涵的不变量.同时分析出不变量与变量间的等量关系.

学生能够认识到: 手里的橡皮泥在手压前和手压后形状发生了变化,变胖了,变矮了.即高度和底面半径发生了改变.手压前后体积不变,重量不变.

环节二:运用情景,解决问题

内容: 例1、将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?

目的:将上述环节中体会到的形之间的变与不变的关系、量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题.

实际效果:学生解答过程布列方程很顺利,有的学生还使用了下面的表格来帮助分析.

锻压前 锻压后

底面半径 5cm 10cm

高 36cm xcm

体积 π×25×36 π×100?x

由实验操作环节知“锻压前的体积=锻压后的体积”,从而得出方程.

解:设锻压后的圆柱的高为xcm,由题意得

π×25×36=π×100?x.

解之得 x=9.

此时有学生将π的值取3.14,代入方程,教师应在此时给予指导,不要早说,现在恰到好处!

(1) 此类题目中的π值由等式的基本性质就已约去,无须带具体值;

(2) 若是题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度.

过程感悟:本节内容通过一幅几何图形展示题目中的一些数量关系,而实际操作的过程有同学将圆柱体变成了长方体,需要教师把握教育机会,引导学生作出相关的解释.

分析: 锻压前 锻压后

底面半径 5cm 长acm, 宽bcm

高 36cm xcm

体积 π×25×36 abx

环节三:操作实践,发现规律

内容:学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内六个同学的计算结果,你发现了什么?

目的:我们知道, 感知到的东西往往没有自己亲手经历操作后的感受来得实在.所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生观察、分析,归纳、总结等数学学习中不备数学思想与数学方法,也同时让学生感悟最复杂的问题中的道理,就在我们玩的过程,就在我们的生活中.

实际效果:

长(cm) 宽(cm) 面积(cm2)

长方形1 15 5 75

长方形2 13.6 6.4 86.4

长方形3 12.8 7.3 93.44

长方形4 11.6 8.4 97.44

长方形5 11 9 99

长方形6 10 10 100

由学生的实际操作得到的近似值已反映出来一个很好的规律.

学生:由操作的过程,同学们作出的长方形形状有“胖”有“瘦”, 反映到表中数据为, 当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大.当长与宽一样长时面积最大.

过程感悟:不要把学生逼太紧,不要怕完不成进度,这个过程进行完后,学生对课本设置相关内容就剩下规范解题过程了.学生的理解远比直接先讲教材的例题效果要好的多.

环节四:练一练,体验数学模型

内容:课本例题

目的:体验“数学化”过程,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性.

例2、 一根长为10米的铁丝围成一个长方形.若该长方形的长比宽多1.4米.

(1)此时长方形的长和宽各为多少米?

(2)若该长方形的长比宽多0.8米,此时长方形的长和宽各为多少米?它围成的长方形的面积与(1)相比,有什么变化?

(3)若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的长方形的面积与(2)相比,有什么变化?

实际效果:学生掌握很好.课本已有完整的解题过程,留做课后作业.

环节五:课堂小结

1.通过对“我变胖了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键.其中也蕴涵了许多变与不变的辨证的思想.

2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.

3.学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题.

环节六:布置作业

七年级上数学课件 篇8

教学内容:苏教版小学数学教材第48~49页“找规律”、“想想做做”第1~4题。

教学要求:

1、让学生经历探索日常生活中间隔排列的两种物体个数关系以及类似现象中简单数学规律的过程,初步体会和认识这种关系以及其中的简单规律,并运用规律解决一些简单的实际问题。

2、让学生感受数学与生活的广泛联系,培养学生用数学眼光观察周围事物,用数学的观点分析日常生活中各种现象的意识和能力,在探索活动中初步发展分析、比较和归纳等思维能力。

3、激发学生对数学问题的好奇心,发展学生的数学思考,逐步形成与人合作的意识和学习的自信心。

教学重点:经历一一间隔现象中简单规律的探索过程。

教学难点:用恰当的方式描述这一规律。

教学过程:

(一)课前游戏,引出规律

游戏1:拍手游戏

× ×┃×× ×┃× ×┃×× ×┃× ×┃×× ×┃

× ×┃×× ×┃× ×┃×× ×┃× ×┃×× ×‖

师生一起拍手,发现规律。

游戏2:手指游戏

引导学生发现手指根数和吸管根数之间的联系。

指出:当两种物体交替出现,也就是一个隔一个出现,在数学上称作一一间隔,这样的排列叫做一一间隔排列。

(二)开门见山,揭示课题

(三)创设情境,探索规律

1、观察:夹子与手帕,小兔与蘑菇,木桩与篱笆一一间隔排列。

2、探究

师:这些一一间隔排列的物体之间有没有像手指和吸管一样的规律存在呢?大家数一数,填写在作业纸的表格一中。

师:仔细观察表格中每组两种物体的个数,把你的发现填在表格下面的横线上,然后在小组里交流。

①夹子和手帕

生:夹子个数比手帕块数多 1。

师:反过来?

生:手帕块数比夹子个数少 1。

师:为什么夹子个数会比手帕块数多1,手帕块数比夹子个数少 1?

②小兔和蘑菇

生:小兔个数比蘑菇块数多 1,蘑菇块数比小兔个数个数少 1。

师:8只小兔中间有几个蘑菇?9只小兔呢?10只小兔呢?

师:为什么说得这么快?

生:根据规律说就快了。

③木桩和篱笆

生:树桩个数比篱笆个数多 1,篱笆个数比树桩个数少 1。

3、猜想

(1)提问:从位置上看,夹子、小兔、木桩在每组的排列中有什么相同的地方?

师:我们把处于一一间隔排列成一行两头的物体叫两端物体。(课件出示)

(2)师:每组中的两端物体相同吗?

(3)师:反过来,手帕、蘑菇、篱笆处于中间,就叫?

生:中间物体。(课件出示)

(4)师:猜一猜,两种物体一一间隔排成一行,两端物体相同,两端物体个数和中间物体个数之间有怎样的关系?如何用式子表示?

(四)动手操作,内化规律

展示交流。

师:看看他的3种不同摆法,小棒和圆在排列中有什么相同的地方吗?

师:小棒和圆一一间隔排成一行,两端都是小棒,我们发现的这些关系与前面猜想的规律一致吗?

(4)抽象规律模型

(课件出示)

师:大家用小棒和圆画出了许多摆法,我们可以用这样的图来表示(课件出示)。

师:看来,不管是什么物体,也不管有多少个,只要是一一间隔排成一行,两端相同,就有怎样的规律?谁来说说看?

师:反过来,中间物体个数?

(5)拓展延伸

师:两端是小棒时,100根小棒应摆几个圆片?100个圆片需要摆几根小棒?

(五)联系实际,巩固规律

1、寻找生活中具有一一间隔规律的物体

2、练习:

(1)马路一边有25根电线杆,每两根电线杆中间有一个广告牌。一共有多少个广告牌呢?

(2)折纸问题

(3)锯木问题

师:现在大家已经熟练掌握了规律,解决问题的速度就快了。

(六)游戏过渡,拓展规律

1、排成一行,两端物体不同

(课件出示)

师:仔细观察,它们是一一间隔排列的吗?与前面排列有什么不同?

师:发现什么了?

2、围成一圈,首尾相连

(1)师:有12名男生排成一行,我们用小棒代替,如果用用圆代替女生,每2根小棒之间摆1个圆,你觉得需要几个圆?

师:这时候需要摆几个圆呢?11个圆够吗?

师:发现小棒根数和圆的个数有什么关系?

师:这种现象在生活中也很常见。

3、小小设计师

①桃红柳绿

(课件出示:小操场照片)

师:小操场的一周准备栽10棵柳树,每两棵柳树中间栽一棵桃树,可以栽桃树多少棵?

师:你是怎么想的?

②鲜花锦簇

师:学校计划在校园里按照一一间隔排列的规律来摆设红黄两种鲜花。有4盆黄花,那么需要多少盆黄花?

欣赏学生设计作品。

(七)总结评价,延伸规律

师:这节课很快就结束了,回忆一下,你在这节课学到了哪些知识?

师:能具体说一说吗?

师:这些规律都经过我们的观察分析、实验验证过。可以说,有规律的现象无处不在,只要我们善于观察,就一定能发现更多规律,解决更多问题。

七年级上数学课件 篇9

●教材分析

1、出处:今天我说的课题是北师大版七年级上册《字母代表数复习课》的内容。

2、地位与作用:通过对字母代表数复习的学习,学生将对字母代表数有进一步的认识和理解,为后继方程应用题的学习奠定了坚实的基础.

●目标分析

一、教学目标

1、情感目标:在复习活动中让学生体验数学与生活实际的密切联系,培养学生的数学应用意识,激发学生成功学习数学的自信心和创新意识。

2、能力目标:培养学生归纳、总结等自我复习能力及团队合作精神,加强生与生之间的合作学习能力和综合运用数学知识解决实际生活问题的能力。

3、知识目标:

1梳理所学知识,形成一定的体系,并逐步掌握用代数式表达数量关系或变化规律的方法;能解释一些简单代数式的实际背景或几何意义,体会数学与现实世界的联系;经历探索事物之间的数量关系,并用字母与代数式表示,建立初步符号感,发展抽象思维.

二、重点、难点

重点:用字母把数和数量关系简明的表示出来,并进行化简、求值;

难点:探索具体事物之间的关系或变化规律,并用符号进行表示

●教法分析与教学设计

充分确立学生在教学中的主体地位,贯彻师生合作的精神,实现民主教学。为此我采用了“四环达标探究教学法”。基本流程:创设情景————合作探究——个性展示——反馈拓展——课堂小结——布置作业。

教学流程

(一)创设情景、导入课题

谈话激趣:今天很高兴和大家一起学习(和同学们握手),如果我和教室里的所有人握手,设包括我在内一共有n人,共需要握手多少次?如果两两相互握手,一共握手多少次?

(意图:本节课因为是复习课,比较枯燥,必须调动学生的情绪。首先我用一个情景引入,让学生明确本节课的目标,从而出示用字母表示数的标题。)

好了今天我们一起就来复习《字母表示数》。

(二)自主学习

填空

1、某工厂一月份加工产品a件,二月份加工的产品数比一月份加工的产品数的3倍少5件,则该厂两个月共加工产品______________件。

2、在a2b与-5ab2,-8m2与9m2,23与32, ab2与b2a中是同类项的是____________________________。

3、若-2xayb+2与3x2y6是同类项,则(-m) n=________________。

4、三个连续整数,中间一个是n,则这三个整数的和是___________________。

5、化简m-[n-2m-(m-n)]的结果是___________________。

6、代数式3a2-b2与a2+b2的差是_______________________。

7、-x-6=-( ),-{-[x-(y-z)]}=_________________。

8、若a+b=1,则6-a-b=_____________。(这个题体现的整体思想)

(意图:用题为载体呈现所学的相关离散性的知识。处理方式:让学生自主完成,在完成题后,然后提炼出知识点、相关方法、能力等写在黑板的右上与后面题提炼出的东西形成一个整体,从而形成结构)

(三)合作探究

1.同学们可能和我一样经常打的,已知出租车收费标准是:起步价3元,可乘3千米;超过3千米,每千米价1.2元。

1、老师坐了5千米,需要多少钱?(5.4)

2、若我乘坐了x(x>3)千米的路程,则我应支付的费用是多少?

3+1.2(x-3)=1.2x-0.6

3、若我支付了9元车费,你能算出我坐了多远吗?8千米

(意图:我用坐出租车的生活实例,将数字运算过渡到列代数式、求解,让学生初步感受字母表示数的优越性。因为本题的后两小问有点难度,通过小组合作把它做出来。)

2.找规律下列每个图形都是若干个棋子围成的正方形图案,图案每条边(包括两个顶点)上都有n(n≥2)个棋子,每个图案棋子总数为S,按下图的排列规律推断,S与n之间的关系可以用式子______________来表示。

n=2 n=3 n=4 n=5

S=4 S=8 S=12 S=16

(意图:本题先从用特殊的数字入手,进而让学生发现这样的等式无穷多,产生对字母的需求,想到可以用字母表示这个规律,由特殊到一般,初步体验字母在规律中的应用。值得注意的是,学生可能出现多个答案,也可能写出左边后直接去括号,要引导学生进行辨别。)

3、观察下列图形

填表:(当梯形的个数为n,用代数式表示火柴根数时,需暴露学生思维,小结学生的各种方法)

梯形个数1 2 3 … n

火柴根数

(下面设计了三个问题,考虑的是让学生熟悉运算顺序,同时通过求值可检验规律的正确性)

(1)、当梯形的个数是n时,火柴的根数是多少?

(2)、当n=20xx时,结果是多少?

(3)、火柴根数可以是20xx吗?

(四)个性展示

意图:以上三个题由易到难,规律也各不相同,让学生意识到生活中有很多有趣的数学问题。然后在此进行总结,字母可以表示数,可以表示规律,还可以表示等量关系,从而进行能力方法迁移,这样即能训练巩固又可以过渡到新问题,并把试题的形式变丰富。在合作完之后,让小组长到讲台上来,把他们小组的见解讲给其他学生听,其他小组成员可以适当补充,充分体现学生自主的课堂)

(五)反馈拓展

提升训练:

按下面方式摆放桌椅:

图1

(1)1张桌子配6张椅子,2张桌子配把张椅子

(2)按照上面桌椅的摆放方式,寻找到的规律来完成下面表格

桌子数1 2 3 4 5 6 7 … n

椅子数

(3)某同学生日Party,在一正方形餐厅中安排40人同时就餐(要求没有剩余椅子),怎样摆放呢?

如果用2张拼成1张大桌子,需拼张大桌子,共需要张小桌子;

如果用3张拼成1张大桌子和6张拼成1张大桌子,共需要张小桌子;

还有别的拼法吗?

(4)若桌椅按下列方式摆放,填写下表:

图2

桌子数1 2 3 4 5 6 … n

椅子数…

如果也要求坐40人(没有剩余椅子),又可以怎样拼呢?

(5)如果你当经理要安排40人进餐,你会选择哪种餐桌的摆法?画图并说理(要求没有剩余的椅子,可以从图1或图2中选择一种摆放方式,也可以两种图并用)

(意图:本例通过教材中的题进行延伸,是本节课挖掘的重点,设置了5个问题,层层递进,由特殊到一般先找出规律,然后将规律运用到实际生活中,并根据2n+4和4n+2进行优化选择,给学生思维空间,突出开放性)

(六)课堂小结

1、这一节课我们一起学习了哪些知识?

2、对这些内容你有什么体会,请与你的同伴交流.

(七)布置作业p129 T 1、2、3

七年级上数学课件 篇10

教学目标

在了解同底数幂乘法意义的基础上掌握法则,会进行同底数幂的乘法基本运算。

在推导法则的过程中,培养观察、概括与抽象的能力。

通过对具体事例的观察和分析,归纳、总结出同底数幂乘法的法则,培养学生归纳、总结,以及从特殊到一般的抽象概括等思维能力。

让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

重点难点

重点

同底数幂相乘的法则的推理过程及运用

难点

同底数幂相乘的运算法则的推理过程

教学过程

一、温故知新

1. 表示什么意义?(是乘方运算,表示10个2相乘;也可以用来表示运算的结果)

2.下列四个式子① ,② ,③ ④ 中,运算结果是 的有哪些?你能说明理由吗?(学生通过讨论,明确两个幂只有当底数相同时才可以乘起来,同时初步感受计算的方法)

3.光的传播速度是每秒 米,若一年以 秒计算,那么光走一年的路程是多少米呢?

学生列出式子 。这个式子怎样运算呢?解决这个问题的关键是弄清楚两个同底数幂相乘的一般方法,下面我们就来探索同底数幂的乘法法则。

二、新课讲解

探究新知

你能计算出 吗?

学生解答,教师板书

那么 等于多少呢?更一般的, 等于多少呢?

学生回答,教师板书

你发现运算的方法了吗?

师生共同概括归纳出同底数幂乘法的法则:

同底数幂相乘,底数不变,指数相加。

用公式表示是: (、n都是正整数)

动脑筋

当3个或三个以上的同底数幂相乘时,怎样用公式表示运算的结果呢?

学生思考并讨论解答,最后教师总结: (,n,p都是正整数)

三、典例剖析

例1 计算:(1) ;(2)

分析:直接运用公式计算,教师板书计算过程,强调初学时要注意弄清楚计算的步骤。

例2 计算:(1) ;(2)

让学生独立完成。这题意在进一步训练运用法则进行计算,注意观察学生是否会用法则进行计算,点评时要强调对法则的运用。

例3 计算:(1) ;(2)

学生解答并讨论,教师注意拓展学生对法则的运用,培养符号演算的能力,指出公式中的底数可以是具体的数,也可以是字母或式子表示的'数,提高学生的运算能力。

四、课堂练习

基础训练:

1.计算:

(1) ;(2) ;(3) ;(4)

2.计算:

(1) ;(2) ;(3) ;(4)

(学生解答各题,教师组织学生互相批改,对学生出错比较多的地方做讲解和变式训练)

提高训练

3. 计算 ;(2)

4.制作拉面需将长条形面团摔匀拉伸后对折,并不断重复若干次这组动作. 随着不断地对折, 面条根数不断增加. 若一碗面约有64 根面条,则面团需要对折多少次? 若一个拉面店一天能卖出2 048 碗拉面,用底数为2的幂表示拉面的总根数。

(用以提升学生运算的灵活性,提高学习兴趣。)

五、小结

师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。(如:对法则的理解,解决了什么问题,体会从特殊到一般探索规律的数学思想等等)

六、布置作业

教材P40 第1题,P41 第12题

七年级上数学课件 篇11

第4课时单项式的乘法

会进行单项式与单项式相乘的运算。

理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的数学思想。

在探索单项式与单项式相乘的过程中,利用乘法交换律和结合律将未知的问题转化为已知的问题,培养学生转化的数学思想。

使学生获得成就感,培养学习数学的兴趣。

重点

单项式与单项式相乘的运算法则及其运用

难点

灵活地进行单项式与单项式相乘的运算。

1.请用式子表示幂的三个运算法则,乘法的交换律和结合律。

2.光走一年的路程是:,请计算结果并说说用到了哪些学过的知识。

3.边长为的正方形的面积是多少?长为,宽为的长方形的面积是多少?

学生先尝试独立解决,然后互相交流,之后教师指出式子是单项式乘以单项式,下面我们来研究单项式乘以单项式的运算方法。

探究新知

1.怎样计算?你能说说每步计算的依据吗?

教师根据学生的回答板书:

(乘法交换律、结合律)

(同底数幂的乘法)

2.你能根据上面的运算,用文字叙述一下单项式乘单项式的方法吗?

引导学生用自己的话叙述上面的运算过程,然后师生共同总结:

单项式与单项式相乘,把它们的系数、同底数幂分别相乘.

通过乘法交换律、结合律,把要解决的单项式相乘问题转化成已经解决了的幂的运算问题,体现了转化的数学思想。

例1.计算:

(1);

(2);

(3)(n是正整数).

学生解答各题,教师巡回指导,发现学生解题中存在的共同错误,然后做点评:

(1)单项式的乘法应遵循“符号优先”,要特别重视符号的运算;

(2)有乘方时要先算乘方,再算乘法;

(3)单项式乘单项式,其结果仍是单项式;

(4)不要漏写只在一个单项式里含有的因式。

1.计算:

(1);

(2);

2.下面的计算对不对?如果不对,怎样改正?

3.计算(其中n是正整数):

教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因。第3题是混合运算,要注意运算步骤和符号运算。

师生共同回顾单项式乘法的运算法则,体会转化的数学思想所起的作用,交流解答运算题的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

P40第4、6题

七年级上数学课件 篇12

掌握积的乘方法则,并能够运用法则进行计算。

会进行简单的幂的混合运算。

在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。

让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

重点

积的乘方法则的运用。

难点

积的乘方法则的推导以及幂的混合运算。

一、复习导入

1.幂的乘方法则是什么?

2.如果一个正方体的棱长为,那么它的体积是多少?

如何计算呢?下面我们就来探索积的乘方的运算法则。

二、新课讲解

探究新知

1.思考:

前面我们学习了同底数幂的乘法、幂的乘方,你能根据前面的学习方法计算吗?

学生讨论,师生共同写出解答过程:

2.发现:

从上面的计算中你发现积的乘方的运算方法了吗?换几个数或字母试试,与你的同学交流。

通过思考、交流,得出:(n是正整数)

要求学生完成法则的语言叙述和推导过程。

用语言叙述:积的乘方,等于把积中每一个因式分别乘方,再把所得的幂相乘。

推导过程:略

3.思考:三个或三个以上因式的积的乘方,是否也具有上面的性质?怎样用公式表示?

学生独立思考、互相交流,然后向全班汇报成果。

三、典例剖析

例1计算:

师生共同分析,教师板书,强调每个因式都要乘方,符号的确定,以及运算的步骤,培养学生细致、有条理的良好习惯。

例2计算:

先让学生独立思考作答,然后全班讨论交流,让学生体验分析解决问题的过程,积累解决问题的经验。此题是幂的混合运算,正确分析计算步骤,正确使用运算法则,注意符号运算是成功的关键。

四、课堂练习

基础练习

1.计算:

2.下面的计算对不对?如果不对,应怎样改正?

3.计算:

教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因。第3题是混合运算,要分析运算步骤,处理好符号。

提高训练:

3.计算:

五、小结

师生共同回顾幂的运算法则,交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

六、布置作业

1.P40第3题

2.计算:

gz85.COM精选阅读

七年级上数学课件(合集十一篇)


资料的定义范围较大,可指代生产资料。在平日里的学习中,我们时常会使用到某些资料。参考资料可以促进我们的学习工作效率的提升。那么,你知道我国有哪些资料种类吗?小编为大家呈上收集和整理的七年级上数学课件(合集十一篇),欢迎大家阅读,希望对大家有所帮助。

七年级上数学课件 篇1

教学目标:

1.知识与技能:通过摸球游戏,了解并掌握计算一类事件发生可能性的方法,体会概率的意义。

2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。

3.情感与态度:通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣。

教学重点:

1.概率的定义及简单的列举法计算。

2.应用概率知识解决问题。

教学难点:灵活应用概率的计算方法解决各种类型的实际问题。

教学过程:

一、复习旧知

1、下面事件:①在标准大气压下,水加热到100℃时会沸腾。②掷一枚硬币,出现反面。③三角形内角和是360°;④蚂蚁搬家,天会下雨,

不可能事件的有 ,必然事件有 ,不确定事件有 。

2、任何两个偶数之和是偶数是 事件;任何两个奇数之和是奇数是 事件;

3、欢欢和莹莹进行“剪刀、石头、布”游戏,约定“三局两胜”决定谁最终获胜,那么欢欢获胜的可能性 。

4、足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?

5、一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?

求一个随机事件概率的基本方法是通过大量的重复试验,那么能不能不进行大量的重复试验,只通过一次试验中可能出现的结果求出随机事件的概率,这就是我们今天要探究学习的“等可能事件的概率”。

二、情境导入

1、任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能性相同吗?正面朝上的概率是多少?

2、这个袋子中有5个乒乓球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球,拿出来后再将球放回袋子中。

(1)会出现哪些可能的结果?

(2)每种结果出现的可能性相同吗?它们的概率分别是多少?你是怎么得到概率的值?

学生分组讨论,教师引导

三、探究新知

1、请大家观察前面的抛硬币、掷骰子和摸球游戏,它们有什么共同的特点?

学生分组讨论,教师引导:

(1)一次试验可能出现的结果是有限的;

(2)每种结果出现的可能性相同。

设一个实验的所有可能结果有n种,每次试验有且只有其中的一种结果出现。如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。

2、探究等可能性事件的概率

(1)抛掷一个均匀的骰子一次,它落地时向上的数是偶数的概率是多少呢?

(2)不透明的一个袋子中装有大小相同的三个球,一个黄色和已编有1.2.3号码的3个白球,从中摸出2个球,一共有多少种不同的结果?摸出2个白球有多少种不同结果?摸出2个白球的概率是多少?

学生先独立思考,然后同桌间讨论,教师巡视指导

一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:

P(A)=/n

必然事件发生的概率为1,记做P(必然事件)=1;不可能事件的发生的概率为0,记做P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1

3、应用新知

例:任意掷一枚均匀骰子。

1.掷出的点数大于4的概率是多少?

2.掷出的点数是偶数的概率是多少?

解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的可能性相等。

1.掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6.

所以P(掷出的点数大于4)=2/6=1/3

2.掷出的点数是偶数的结果有3种:掷出的点数分别是2,4,6.

所以P(掷出的点数是偶数)=3/6=1/2

四、实践练习

1、袋子里装有三个红球和一个白球,它们除颜色外完全相同。小丽从盒中任意摸出一球。请问摸出红球的概率是多少?

2、先后抛掷2枚均匀的硬币

(1)一共可能出现多少种不同的结果?

(2)出现“1枚正面、1面反面”的结果有多少种?

(3)出现“1枚正面、1面反面”的概率有多少种?

(4)出现“1枚正面、1面反面”的概率是1/3,对吗?

3、将一个均匀的骰子先后抛掷2次,计算:

(1)一共有多少种不同的结果?

(2)其中向上的数之和分别是5的结果有多少种?

(3)向上的数之和分别是5的概率是多少?

(4)向上的数之和为6和7的概率是多少?

五、课堂检测

1、甲、乙、丙三个人随意的站一排拍照,乙恰好站中间的概率是( )

A 2/9 B 1/3 C 4/9 D以上都不对

2、在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是( )

A 0.34 B 0.17 C 0.66 D 0.76

3、把标有1、2、3、4…10的10个乒乓球放在一个箱中,摇匀后,从中任取一个,号码小于7的奇数概率是( )

A 3/10 B 7/10 C 2/5 D 3/5

4、某商场举办有奖销售活动办法如下:凡购满100元得奖券一张,多购多得,现有10000张奖券,设特等奖1个,一等奖10个,二等奖100个,则一张奖券中一等奖的概率是

5、一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同。从中任意摸出一球,则: P(摸到红球)=

P(摸到白球)=

P(摸到黄球)=

6、一个袋中有3个红球和5个白球,每个球除颜色外都相同。从中任意摸出一球,摸到红球和摸到白球的概率相等吗?分别是多少?如果不相等,能否通过改变袋中红球或白球的数量,使摸到的红球和白球的概率相等?

六、课堂小结

回想一下这节课的学习内容,同学们自己的收获是什么?

1、等可能性事件的特征:

(1)一次试验中有可能出现的结果是有限的。(有限性)

(2)每种结果出现的可能性相等。(等可能性)

2、求等可能性事件概率的步骤:

(1)审清题意,判断本试验是否为等可能性事件。

(2)计算所有基本事件的总结果数n。

(3)计算事件A所包含的结果数。

(4)计算P(A)=/n。

布置作业:

1、P148习题6.4知识技能 1.2.3

2、问题解决:请大家为“翠苑小区”亲子活动设计一个有奖竞猜活动方案。

板书设计

等可能事件的概率(1)

等可能事件的特征:

1、 一次试验可能出现的结果是有限的;

2、 每一结果出现的可能性相等。

一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:

七年级上数学课件 篇2

3,体验分类是数学上的常用处理问题的方法。

正确理解有理数的概念。

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。

问题1:观察黑板上的9个数,并给它们进行分类。

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。

例如,对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5。1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数。(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数’。按照书本的说法,得出“整数”“分数”和“有理数”的概念。

“统称”是指“合起来总的名称”的意思。

1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。

2,教科书第10页练习。

此练习中出现了集合的概念,可向学生作如下的说明。

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?也可以教师说出一些数,让学生进行判断。集合的概念不必深入展开。

创新探究。

问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

(1)必做题:教科书第18页习题1、2第1题。

(2)教师自行准备本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

兴趣是最好的老师。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。虽然我国素质教育已经开展多年了,但是许多教师在讲课的时候还是很难进行启发式教学,往往将本来应该是十分生动的.内容,以“填鸭式、满堂灌”的方式讲述。因此,教师一定要注意激发学生的学习兴趣,在讲授知识时多考虑一下自己讲授的知识以及教授的方法能否引发学生的兴趣。

激发学生的学习兴趣,教师可以做到以下几点:(1)设置问题情境,让学生积极思考,提高学生独立思考问题的能力,培养学生的逻辑思维能力。(2)利用多媒体进行教学。随着科学技术的进步,多媒体教学已经得到了普遍发展。通过多媒体教学教师可以将抽象的数学符号、枯燥的数学定理、复杂的证明过程呈现出来。这样就可以使学生获得一定感性思维。(3)向学生讲述一下关于数学的小知识或者是小故事,激发学生的学习兴趣。

比如,冀教版初中数学八年级上册第十六章的知识点是勾股定理,教师在讲勾股定理这一章时,可以向学生讲述一下古代人是怎样发现勾股定理的,或者是向学生讲述一下古代人是怎样将数学知识运用到生活中去的。再比如,第十五章的知识点是轴对称,教师可以列举一些体现轴对称特点的中国古代建筑物,比如说故宫的建筑模式。

素质教育要求师生之间是一种民主平等的关系,师生双方在教学内容上是传递与接受的关系;在人格上是平等关系;在社会道德上是相互促进的关系。教师在日常教学过程中一定要充分发扬民主,建立和谐的师生关系。比如,在数学课堂上,有学生认为教师有的地方讲的不对,然后在全班同学面前给教师提了出来。在这种情况下,教师应该大度宽容,首先应该表扬学生积极思考问题,其次,仔细考虑自己是否真的出错了。最后,如果有错要及时改正。在初中数学教学过程中,教师应该充分调动学生的积极性和主动性,形成互动、互惠的师生关系。

教学目标具有激励、导向、评价作用,对教师的教学和学生的学习都具有十分重要的作用。教师在设置数学教学目标的时候,要注意将知识与能力、过程与方法、情感态度与价值观紧密结合起来。数学教学不仅要注意问题的解决,也要关注学生的思维过程。教师要成为学生学习的指导者和促进者,不仅要注重学习的结果,更要注重学生学习的过程。教师要合理运用教学方法教学方法的设计应该遵循多样性、灵活性、综合性、创新性的原则。在选择教学方法时,教师应该依据教学规律和教学原则。

除此之外,教师在选择教学方法时要依据学生的学习特点,要符合学生的身心发展规律。同时还要依据教学的组织形式、时间、设备条件进行教学方法的选择。由于中学生的注意力还不是特别集中,在一节课中只运用一种教学方法会使学生产生疲惫和倦怠,因此,教师在讲授过程中应该综合运用多种教学方法,以引起学生的注意力和积极性。比如,在学习《命题与证明》这一章时,教师应该采用讲授法、谈话法、练习法等,这样既可以使学生掌握一定的新知识又能够及时掌握新知识,同时又激发了学生学习的积极性和主动性。教师在教学中应多采用启发式教学。所谓启发式教学就是教师要承认学生的主体地位,充分调动学生的学习积极性和主动性,引导学生独立思考、积极探索,生动活泼地学习,自觉地掌握科学知识,提高分析问题、解决问题的能力。初中教师在教学过程中,一定要时刻注意启发学生的思维。这样才能够激发学生的学习兴趣,使课堂变得生动、有趣。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。

综上所述,在初中数学教学过程中要运用恰当、科学的教学策略。教师一定要根据学生的实际情况,根据教材的具体内容制定科学的教学策略,以提高教学质量和学生学习的质量。教师在进行教学时一定要遵循直观性原则、因材施教原则、理论联系实际原则、科学性等原则。教学策略是多种多样的,比如激发学生的学习兴趣;树立多元化的教学目标;建立民主平等的师生关系等。教师一定要跟随教育改革的步伐,跟随时代的潮流,积极探索教学之路,提升数学教学水平,培养出高素质的学生。

七年级上数学课件 篇3

3,体验数形结合的思想。

教学难点归纳相反数在数轴上表示的点的特征。

知识重点相反数的概念。

教学过程(师生活动)设计理念。

设置情境。

引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。

4,-2,-5,+2。

允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)。

思考结论:教科书第13页的思考。

再换2个类似的数试一试。

培养学生的观察与归纳能力,渗透数形思想。

深化主题提炼定义给出相反数的定义。

学生思考讨论交流,教师归纳总结。

规律:一般地,数a的相反数可以表示为-a。

思考:数轴上表示相反数的两个点和原点有什么关系?

练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义。

给出规律。

解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

学生交流。

分别表示+5和-5的相反数是-5和+5。

练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。

小结与作业。

课堂小结1,相反数的定义。

2,互为相反数的数在数轴上表示的点的特征。

3,怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业1,必做题教科书第18页习题1.2第3题。

2,选做题教师自行安排。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

课题:1.2.4绝对值。

教学目标1,掌握绝对值的概念,有理数大小比较法则.

2,学会绝对值的计算,会比较两个或多个有理数的大小.

3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

教学难点两个负数大小的比较。

知识重点绝对值的概念。

教学过程(师生活动)设计理念。

设置情境。

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反。

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

学生回答后,教师说明如下:

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

验数学知识与生活实际的联系.

七年级上数学课件 篇4

教学目标

1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3,体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类

知识重点正确理解有理数的概念

教学过程(师生活动)设计理念

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数。

按照书本的说法,得出“整数”“分数”和“有理数”的概念。

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业

课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业1,必做题:教科书第18页习题1.2第1题

2,教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概

念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进

行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分

类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

课题:1.2.2数轴

教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

教学难点数轴的概念和用数轴上的点表示有理数

知识重点

教学过程(师生活动)设计理念

设置情境

引入课题教师通过实例、课件演示得到温度计读数.

问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

(多媒体出示3幅图,三个温度分别为零上、零度和零下)

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学

点表示数的感性认识。

点表示数的理性认识。

合作交流

探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

从游戏中学数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解

寻找规律

归纳结论问题3:

1,你能举出一些在现实生活中用直线表示数的实际例子吗?

2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

4,每个数到原点的距离是多少?由此你会发现了什么规律?

(小组讨论,交流归纳)

归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

巩固练习

教科书第12页练习

小结与作业

课堂小结请学生总结:

1,数轴的三个要素;

2,数轴的作以及数与点的转化方法。

本课作业1,必做题:教科书第18页习题1.2第2题

2,选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学教育教案 篇2

学习目标:

1.理解平行线的意义两条直线的两种位置关系;

2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

学习重点:

探索和掌握平行公理及其推论.

学习难点:

对平行线本质属性的理解,用几何语言描述图形的性质

一、学习过程:预习提问

两条直线相交有几个交点?

平面内两条直线的位置关系除相交外,还有哪些呢?

(一)画平行线

1、 工具:直尺、三角板

2、 方法:一"落";二"靠";三"移";四"画"。

3、请你根据此方法练习画平行线:

已知:直线a,点B,点C.

(1)过点B画直线a的平行线,能画几条?

(2)过点C画直线a的平行线,它与过点B的平行线平行吗?

(二)平行公理及推论

1、思考:上图中,①过点B画直线a的平行线,能画 条;

②过点C画直线a的平行线,能画 条;

③你画的直线有什么位置关系? 。

②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

二、自我检测:

(一)选择题:

1、下列推理正确的是 ( )

A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d

C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c

2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

A.0个 B.1个 C.2个 D.3个

(二)填空题:

1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。

2、在同一平面内,直线L1与L2满足下列条件,写出其对应的.位置关系:

(1)L1与L2 没有公共点,则 L1与L2 ;

(2)L1与L2有且只有一个公共点,则L1与L2 ;

(3)L1与L2有两个公共点,则L1与L2 。

3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。

4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。

三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

七年级数学教育教案 篇3

多边形及其内角和

知识点一:多边形的概念

⑴多边形定义:在平面内,由一些线段首位顺次相接组成的图形叫做________.

如果一个多边形由n条线段组成,那么这个多边形叫做____________.(一个多边形由几条线段组成,就叫做几边形.)

多边形的表示:用表示它的各顶点的大写字母来表示,表示多边形必须按顺序书写,可按顺时针或逆时针的顺序.如五边形ABCDE.

⑵多边形的边、顶点、内角和外角.

多边形相邻两边组成的角叫做______________,多边形的边与它的邻边的延长线组成的角叫做________________.

⑶多边形的对角线

连接多边形的不相邻的两个顶点的线段,叫做___________________.画一个五边形ABCDE,并画出所有的对角线.知识点二:凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的______,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画CD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是______多边形.

知识点二:正多边形

各个角都相等,各条边都相等的多边形叫做_____________.

探究多边形的对角线条数

知识点三:多边形的内角和公式推导

1、我们知道三角形的内角和为__________.

2、我们还知道,正方形的四个角都等于____°,那么它的内角和为_____°,同样长方形的内角和也是______°.

3、正方形和长方形都是特殊的四边形,其内角和为360度,那么一般的四边形的内角和为多少呢?

4、画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?

探究1:任意画一个四边形,量出它的4个内角,计算它们的和.再画几个四边形,?量一量、算一算.你能得出什么结论?能否利用三角形内角和等于180?°得出这个结论?结论:。

探究2:从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图3,?请填空:

(1)从五边形的一个顶点出发,可以引_____条对角线,它们将五边形分为_____个三角形,五边形的内角和等于180°×______.

(2)从六边形的一个顶点出发,可以引_____条对角线,

它们将六边形分为_____个三角形,六边形的内角和等于180°×______.探究3:一般地,怎样求n边形的内角和呢?请填空:

从n边形的一个顶点出发,可以引____条对角线,它们将n边形分为____个三角形,n边形的内角和等于180°×______.

综上所述,你能得到多边形内角和公式吗?设多边形的边数为n,则

n边形的内角和等于______________.

想一想:要得到多边形的内角和必需通过“___________定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?

知识点四:多边形的外角和

探究4:如图8,在六边形的每个顶点处各取一个外角,?这些外角的和叫做六边形的外角和.六边形的外角和等于多少?

问题:如果将六边形换为n边形(n是大于等于3的整数),结果还相同吗?多边形的外角和定理:.理解与运用

例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.

自我检测:

(一)、判断题.

1.当多边形边数增加时,它的内角和也随着增加.()

2.当多边形边数增加时.它的外角和也随着增加.()

3.三角形的外角和与一多边形的外角和相等.()

4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.()

5.四边形的四个内角至少有一个角不小于直角.()

(二)、填空题.

1.一个多边形的每一个外角都等于30°,则这个多边形为

2.一个多边形的每个内角都等于135°,则这个多边形为

3.内角和等于外角和的多边形是边形.

4.内角和为1440°的多边形是

5.若多边形内角和等于外角和的3倍,则这个多边形是边形.

6.五边形的对角线有

7.一个多边形的内角和为4320°,则它的边数为

8.多边形每个内角都相等,内角和为720°,则它的每一个外角为

9.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠.

10.四边形的四个内角中,直角最多有个,钝角最多有锐角最

(三)解答题

1、一个八边形每一个顶点可以引几条对角线?它共有多少条对角线?n边形呢?

2、在每个内角都相等的多边形中,若一个外角是它相邻内角的则这个多边形是几边形?

3、若一个多边形的内角和与外角和的比为7:2,求这个多边形的边数。

4、一个多边形的每一个内角都等于其相等外角的

5.一个多边形少一个内角的度数和为2300°.

七年级数学教育教案 篇4

教材分析:

本节课是新教材几何教学的第一节课,通过学生身边的现实生活中的实物,让学生感觉图形世界丰富多彩。经历从现实世界中抽象出几何图形的过程.激发学生学习几何的热情.。无需对具体定义的深刻理解,只要学生能用自己的语言描述它们的某些特征。

教学目标:

知识目标:

在具体情境中认识立方体、长方体、圆柱体、圆锥体、球体。并能用自己的语言描述它们的某些特征。进一步认识点、线、面、体,初步感受点、线、面、体之间的关系。

能力目标:

让学生经历“几何模形---图形---文字”这个抽象过程,培养学生抽象、辨别能力。

情感目标:

感受图形世界的丰富多彩,激发学习几何的热情。

教学重点:

经历从现实世界中抽象出几何图形的过程,感受点、线、面、体之间的关系。

教学难点:

抽象能力的培养,学习热情的激发。

教学方法:

引导发现、师生互动。

教学准备:

多媒体课件、学生身边的实物等。

教学过程:

合作学习

问题1:

我们已学过的或认得的存有哪些几何体?

(学生讨论、交流)

问题2:

你能举出一些在日常生活中形状与上述几何体类似的物体吗?

(学生讨论、举例)

课本中P162中的合作学习

(教师可多举一些平面与曲面的实例让学生感受、辨别)

特别指出:

数学中的平面是可以无限伸展的

议一论

P163课内练习1

P163课内练习2

师生讨论指出:

线与线相交成点,面与面相交成线。

想一想:

观察下图,你发现什么?

师生讨论

议一议:

日常生活中的哪些事物给人以点、线的形象。

指出:

日常生活中点与面只是相对的一个感念。如:

在中国的地图上,北京是一个点;而在北京市地图上,北京是一个面。

活动探究:

P164课内练习3

应用拓展:

请以给定的图形“〇〇、△△、═”(两个圆、两个三角形、两条平行线)为构件,尽可能多地构思独特且有意义的图形,并写上一句贴切、诙谐的解说词。如图就是符合要求的一个图形。你还能构思出其他的图形吗?比一比,看谁想得多。

议一议:

本节课有什么收获?

布置作业

七年级数学教育教案 篇5

教学过程:

一、复习

1、一辆汽车行驶的速度不变,行驶的时间和路程。

2、一辆汽车从甲地开往乙地,行驶的时间和速度。

看上面的题,回答下面的问题:

(1)各有哪三种量?

(2)其中哪一种量是固定不变的?

(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

3、这节课,我们就应用比例的知识解决一些实际问题。

二、新授

1、教学例5

(1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?

(2)学生读题后,思考和讨论下面的问题:

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(4)根据正比例的意义列出方程:

解:设李奶奶家上个月的水费是χ元。

12.8/8=χ/10

8χ= 12.8×10

χ=128÷8

χ= 16答:李奶奶家上个月的水费是16元。

(5)将答案代入到比例式中进行检验。

2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

3、教学例6

(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

(3)指名板演,全班评讲。

4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

三、巩固练习

1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

2、完成练习九第5、6、7题。

四、总结

用比例知识解决问题的步骤是什么?

教学目标:

1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

3、培养学生良好的解答应用题的习惯。

教学重点:

用比例知识解答比较容易的归一、归总应用题。

教学难点:

正分析题中的比例关系,列出方程。

七年级上数学课件 篇5

一、素质教育目标

(一)知识教学点

1.能根据一个数的表示“距离”,初步理解的概念.

2.给出一个数,能求它的

(二)能力训练点

在把的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.

(三)德育渗透点

1.通过解释的几何意义,渗透数形结合的思想.

2.从上节课学的相反数到本节的,使学生感知数学知识具有普遍的联系性.

(四)美育渗透点

通过数形结合理解的意义和相反数与的联系,使学生进一步领略数学的和谐美.

二、学法引导

1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.

2.学生学法:研究+6和-6的不同点和相同点→概念→巩固练习→归纳小结(代数意义)

三、重点、难点、疑点及解决办法

1.重点:给出一个数会求出它的

2.难点:的几何意义,代数定义的导出.

3.疑点:负数的是它的相反数.

四、课时安排

2课时

五、教具学具准备

投影仪(电脑)、三角板、自制胶片.

六、师生互动活动设计

教师提出+6和-6有何相同点和不同点,学生研究讨论得出概念;教师出示练习题,学生讨论解答归纳出代数意义.

七、教学步骤

(一)创设情境,复习导入

师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.

学生活动:一个学生板演,其他学生在练习本上画.

【教法说明】的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.

(二)探索新知,导入 新课

师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?

学生活动:思考讨论,很难得出答案.

师:在数轴上标出到原点距离是6个单位长度的点.

学生活动:一个学生板演,其他学生在练习本上做.

师:显然A点(表示6的点)到原点的.距离是6,B点(表示-6的点)到原点距离是6个单位长吗?

学生活动:产生疑问,讨论.

师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的我们把这个距离叫+6与-6的

七年级上数学课件 篇6

尊敬的各位领导、各位评委老师:

大家好,今天我说课的内容是《认识平面图形》。首先,我谈一下对本课教材的理解。

“认识平面图形”是人教版数学课程标准小学数学一年级上册第四单元的第二课时。它是在前面已经学习了《认识立体图形》(长方体、正方体、圆柱和球)的基础上进行教学的,也是进一步学习习近平面图形的基础。因此,学好这部分内容是非常重要的。

数学课程标准在第一学段的具体目标中指出:使学生能辨认长方形、正方形、三角形和圆等简单图形,通过观察、操作,能用自己的语言描述长方形和正方形的特征。

根据本节课在教材中的地位和作用,依据课程标准和学生的认知发展水平,我确定了以下教学目标:

⑴知识目标:使学生认识长方形、正方形、三角形和圆,体会“面在体上”;体会长方形、正方形、三角形和圆在生活中的普遍存在。

⑵能力目标:通过操作、观察、比较等活动培养学生抽象、概括、实践能力,发展空间观念。培养学生的合作探究和创新意识。

教学重点:认识四种平面图形,了解平面图形在生活中的运用。

一年级的学生爱玩、好动、好奇心强,但注意的稳定性和持久性较差,根据这一特点,我采用愉快式教学方法,创设情境,设计色彩鲜艳的课件,让学生在具体的情境中学习数学。在教学中,我还创设有意义的问题情境和数学活动,使学生在自主探索,合作交流中认识平面图形。

为了更好地突出学生的主体地位,在整个教学过程中,通过让学生看一看、想一想、摸一摸、找一找、说一说等多种形式,调动学生的多种感官参与学习,把孩子的兴趣点,大脑风暴点错落有致的结合起来,以达到最佳的学习效果。

教师:我们的好朋友淘淘要带我们去一座美丽的`城堡,(课件出示由立体图形拼成的城堡)在这座城堡里,你都看到了哪些物体呢?(长方体、正方体、圆柱和球)除里这些立体图形以外,还有很多很多其他的图形,想不想去认识一下?(课件出示长方形、正方形、三角形和圆。)让学生尝试着说说这些图形的名字。引出本课所要学习的内容:今天我们就来认识这些有趣的图形。板书课题:认识图形

【这样的设计一方面复习了前面学习的立体图形,另一方面激发了学生的学习兴趣,使学生体会到了知识的连贯性。】

1、感知“面”在“体”上。

(1)观察操作:学生拿出提前准备好的学具(长方体、正方体、圆柱体和三棱柱),亲自动手实践,看一看、摸一摸,说一说。

(2)汇报交流:你在什么物体上找到了什么样的图形?摸一摸自己找的图形的面,有什么感觉?引导说出“面“的特点是平。所以这些图形都叫做“平面图形”。

【这样设计的目的是:使学生通过观察,发现这些平面图形的“家”都在立体图形上。初步感知面在体上。】

七年级上数学课件 篇7

一.选择题 (本大题共12小题,每小题4分,共48分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)

1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是( )

2.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:

①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有( )

A.1个 B.2个 C.3个 D.4个

3.如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是( )

A.750米 B.1000米 C.1500米 D.2000米

4.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于( )

A.2:5 B.14:25 C.16:25 D.4:21

5.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是( )

A.线段CD的中点 B.OA与OB的中垂线的交点

C.OA与CD的中垂线的交点 D.CD与∠AOB的平分线的交点

6.和三角形三个顶点的距离相等的点是( )

A.三条角平分线的交点 B.三边中线的交点

C.三边上高所在直线的交点 D.三边的垂直平分线的交点

7.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=( )

A.23° B.46° C.67° D.78°

8.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是( )

A.∠A=40°,∠B=50° B.∠A=40°,∠B=60°

C.∠A=20°,∠B=80° D.∠A=40°,∠B=80°

9.如图,AD⊥BC,D为BC的中点,以下结论正确的有几个?( )

①△ABD≌△ACD;②AB=AC;③∠B=∠C;④AD是△ABC的角平分线.

A.1 B.2 C.3 D.4

10.等边三角形的边长为2,则该三角形的面积为( )

A.4 B. C.2 D.3

11.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是( )

A.等腰三角形 B.等边三角形 C.不等边三角形 D.不能确定形状

12.如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为( )

A.9 B.8 C.6 D.12

二.填空题(共6小题,共24分)

13.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 种.

14.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ范围是 .

15.如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC= cm.

16.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为 .

17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是 秒.

18.已知射线OM.以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则∠AOB= (度)

三.解答题(共8小题题)

19.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.

20.如图.AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.

21.如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.

求证:DE=DF.

22.如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.

23.如图,BO平分∠CBA,CO平分∠ACB,且MN∥BC,若AB=12,△AMN的周长为29,求AC的长.

24.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?

25.如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.

(1)折叠后,DC的对应线段是 ,CF的对应线段是 ;

(2)若∠1=50°,求∠2、∠3的度数;

(3)若AB=8,DE=10,求CF的长度.

26.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.

(1)求证:△ABQ≌△CAP;

(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.

(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.

七年级上数学课件 篇8

一、选择题:(本大题满分30分,每小题3分)

1、下列语句错误的是( )

A、数字0也是单项式 B、单项式— 的系数与次数都是1

C、是二次单项式 D、与 是同类项

2、如果线段AB=5cm,BC=4cm,那么A,C两点的距离是( )

A、1cm B、9cm C、1cm或9cm D、以上答案都不对

3、如图1所示,AE//BD,∠1=120°,∠2=40°,则∠C的度数是( )

A、10° B、20° C、30° D、40°

4、有两根长度分别为4cm和9cm的木棒,若想钉一个三角形木架,现有五根长度分别为3cm、6cm、11cm、12.9cm、13cm的木棒供选择,则选择的方法有( )

A、1种 B、2种 C、3种 D、4种

5、下列说法中正确的是( )

A、有且只有一条直线垂直于已 知直线

B、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。

C、互相垂直的两条线段一定相交

D、直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线l的距离是3cm.

6、在下列轴对称图形中,对称轴的条数最少的图形是( )

A、圆 B、等边三角形 C、正方形 D、正六边形

7、在平面直角坐标系中,一只电子青蛙每次只能向上或向下或向左或向右跳动一个单位,现已知这只电子青蛙位于点(2,—3)处,则经过两次跳动后,它不可能跳到的位置是( )

A、(3,—2) B、(4,—3) C、(4,—2) D、(1,—2)

8、已知方程 与 同解,则 等于( )

A、3 B、—3 C、1 D、—1

9、如果不等式组 的解集是 ,那么 的值是( )

A、3 B、1 C、—1 D、—3

10、在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变 换:

① ②

按照以上变换有: ,那么 等于( )

A、(3,2) B、(3,- 2) C、(-3,2) D、(-3,-2)

第二部分非选择题(共90分)

二、填空题(本大题满分24分,每小题3分)

11、如图,BC⊥AC,CB=8cm,AC=6cm,AB=10cm,那么点B到AC的距离是 ,点A到BC的距离是 ,A、B两点间的距离是 。

12、如图,在 △ABC中,∠C=90º,AD是角平分线,DE⊥AB于E,且DE=3cm,BD=5cm,

则BC= cm

13、如图,CD是线段AB的垂直平分线,AC=2,BD=3,则四边形ACBD的

周长是

14、如图,OA=OB,OC=OD,∠O=60°, ∠C=25°,则∠BED等于_____________

15、已知点 在第二象限,则点 在第 象限。

16、某班为了奖励在校运会上取得较 好成绩的运动员,花了400 元钱购买甲,乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?该问题中,若设购买甲种奖品 件,乙种奖品 件,则可根据题意可列方程组为

17、若一个多边形的内角和为外角和的3倍,则这个多边形为 边形。

18、若关于 的二元一次方程组 的解满足 ,则 的取值范围为

三、解答题(本大题满分66分)

19、解下列方程组及不等式组(每题5分,共10分)

(1) (2)

20、(本小题8分)某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图所示的统计图,根据图中所提供的信息,回答下列问题:

(1)共抽取了多少名

名学生的数学成绩进行分析?

(2)如果80分以上(包括80分)为优生,估计该年的优生率为多少?

(3)该年全市共有2人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少?

21、(本小题8分)如图所示,一艘货轮在A处看见巡逻艇M在其北偏东62º的方向上,此时一艘客轮在B处看见这艘巡逻艇M在其北偏东13º的方向上,此时从巡逻艇上看这两艘轮船的视角∠AMB有多大?

22、(本小题10分)已知:如图,AB=DC,AE=DF,CE=FB,求证:AF=DE。

23、(本小题10分)已知,如图,∠B=∠C=90 º,M是BC的中点,DM平分∠AD C。

(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论。

(2)线段DM与AM有怎样的位置关系?请说明理由。

24、(本小题12分)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格,月处理污水量如下表:

A型 B型

价格(万元/台)

处理污水量(吨/月) 240 200

经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台设备少6万元。

(1)求 、的值;

(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;

(3)在(2)问到条件下,若该月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案。

25、(本小题8分)在平面直角坐标系中,已知三点 ,其中 满足关系式 ;

(1)求 的值,(2)如果在第二象限内有一点 ,请用含 的式子表示四边形ABOP的面积;若四边形ABOP的面积与 的面积相等,请求出点P的坐标;

附加题:(共10分)(3)若B,A两点分别在 轴, 轴的正半轴上运动,设 的邻补角的平分线和 的邻补角的平分线相交于第一象限内一点 ,那么,点 在运动的过程中, 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由。

(4)是否存在一点 ,使 距离最短?如果有,请求出该点坐标,如果没有,请说明理由。

考试答案

一、选择题

BCBCD BCADA

二、填空题

11、8cm,6cm,10cm 12、8 13、10 14、80º 15、一

16、17、八 18、

三、解答题

21、(本小题8分)

依题意得:∵点M在点A的北偏东62 º,∴∠MAB=28º

∵∠MBF=13º, ∠ABF=90º ∴∠ABM=103 º

∴∠AMB=180 º—∠MAB—∠ABM=180 º—28º—103 º=49 º

23、(本小题10分)(1)AM是平分∠BAD,

理由如下:过点M作ME⊥AD于点E。

∵DM平分∠ADC且MC⊥ CD, ME⊥AD ∴MC=ME

∵M为BC的 中点 ∴MC=MB

∴ME=MB ∵MB⊥AB, ME⊥AD

∴AM平分∠BAD

(2)DM⊥AM

理由如下:∵DM平分∠ADC ∴∠ADM= ∠ADC

∵AM平分∠BAD ∴∠DAM= ∠BAD

∵∠B=∠C=90 º ∴AB//CD

∴∠ADC+∠BAD=180 º

∴∠ADM+∠DAM= ∠ADC+ ∠BAD= (∠ADC+∠BAD)=90 º

∴∠DMA=90 º

∴DM⊥AM

25、(本小题8分)(1)a=2,b=3,c=4(2)四边形ABOP的面积 ;

的面积=6, 点P的坐标(-3,1);

附加题:(共10分)(3) 的大小不会发生变化其定值

(4)存在,点

七年级上数学课件 篇9

实数可以分为有理数和无理数两类,或代数数和超越数两类,或正实数,负实数和零三类。实数集合通常用字母R表示。而R^n表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数,包括整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

相反数(只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数),实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。

绝对值(在数轴上另一个数与a到原点0的距离分别相等),实数a的绝对值是:|a|。

a为正数时,|a|=a(不变);

a为0时,|a|=0;

a为负数时,|a|=-a(为a的相反数)。

(任何数的绝对值都大于或等于0,因为距离没有负的)。

倒数(两个实数的乘积是1,则这两个数互为倒数)实数a的倒数是:1/a(a≠0)。

数轴(任何实数都可在数轴上表示)。

平方根(某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根)。

立方根(如果一个数x的立方等于a,即x的三次方等于a(x^3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根(cuberoot),也叫做三次方根)。

定义

如果画一条直线,规定向右的方向为直线的正方向,在其上取原点O及单位长度OE,它就成为数轴线,或称数轴。

数轴的三要素:原点、正方向和单位长度。

数轴上的点与实数一一对应。

分类

实数按性质分类是:正实数、0、负实数。

实数按定义分类是:有理数,无理数。

有理数可以分为整数,分数。

整数又可分为正整数、0、负整数。

分数又可分为正分数,负分数。

无理数可分为正无理数和负无理数。

正有理数又可分为正整数,正分数。

负有理数又可分为负整数,负分数。

七年级上数学课件 篇10

教学重难点分析:

1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。

2、教学重、难点

教学重点:理解乘方定义,会进行有理数的乘方运算;

教学难点:有理数乘方运算的符号法则的形成与运用

教法学法分析:

教法:启发式教学,多媒体辅助教学;

学法:观察、比较、归纳,合作探究。

教学过程设计:

1、创设情境提出问题

(1)、边长为3的正方形的面积是___ 3×3可以记作___,读作_________.

(2)、棱长为3的正方体的体积是___ 3×3×3可以记作___,读作_________.

通过创设问题情境,唤起旧知,为学习新知做好铺垫

2、自主探索形成新知

观察下列各式有何特征?

(1)2×2×2×2=

(2)(-3)×(-3)×(-3)=

引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。

3、应用新知 巩固概念

练习1、2巩固乘方定义及乘方表示的注意点,培养学(cn-)生良好的学习习惯。例题进一步强化乘方运算

4、探索研究 发现规律

通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。

5、应用新知 巩固训练

进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力

6、拓展思维 知识延伸

利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。

7、课堂小结 归纳反思

锻炼学生及时总结的良好习惯和归纳能力

教学评价分析:

对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;

(1)关注学生的智力参与度

(2)学生的课堂参与度

2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。

新人教版七年级数学下册教案

七年级上数学课件 篇11

教学内容:

六年级下册第5~7 例3、例4

教学目的:

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:负数与负数的大小比较。

教学过程:

一、复习导入,提出目标

1、读数,指出哪些是正数,哪些是负数?

-128

25.06

+0.019

-2/3

+16/57

0 -82

2、如果+10%表示增加10%,那么-26%表示()

3、某日傍晚,九仙山的气温由上午的零上2摄氏度下降了5摄氏度,这天傍晚九仙山的气温是()摄氏度。

4、提出学习目标

二、交流探索,学生展示

(一)教学例3

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

2、出示例3:

(1)问:你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上画好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来)。

(4)学生展示,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

A、从0起往右依次是?从0起往左依次是?你发现什么规律?

B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?

(7)练习:p7做一做

第1、2题。

(二)教学例4

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、小结:负数比0小,正数比0大,负数比正数小。

7、练习:P7做一做

第3题。

三、应用练习,拓展延伸

1、练习一

第4、5、6题。

2、按顺序排列

-23 25

-12

0 -3.6

3、-6和0相差多少? -6和+6相差多少?

四、归纳总结

学生交流学习心得

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

七年级上册数学课件(精华8篇)


为了促进学生掌握上课知识点,老师需要提前准备教案,老师在写教案课件时还需要花点心思去写。老师的上课要按照教案课件来实施,有没有值得借鉴的优秀教案课件素材?本文聚焦于与“七年级上册数学课件”紧密相关的主题,我们将对您的问题和需求提供专业的建议和意见!

七年级上册数学课件 篇1

一、教学目标

1.使学生认识平行线的特征,能灵活地利用平行线的三个特征解决问题.

2.继续对学生进行初步的数学语言的训练,使学生能用数学语言叙述平行线的特征,并能用初步的数学语言进行简单的逻辑推理.

3.使学生理解平移的思想,知道图形经过平移以后的位置,并能画出平移后的图形.

4.通过利用“几何画板”所做的数学实验的`演示等,培养学生的观察能力,即在图形的运动变化中抓住图形的本质特征,发展学生逻辑思维能力,通过实际问题的解决培养学生分析问题和解决问题的能力.

5.通过课堂设疑,培养学生勇于发现、探索新知识的精神.

6.通过创设问题情境,让学生亲身体验、直观感知并操作确认,激发学生自主学习的欲望,使之爱学、会学、学会、会用.

二、教学重点

平行线的三个特征.

三、教学难点

灵活地利用平行线的三个特征解决问题.

四、教学过程

老师:同学们,如图所示,是我们大连的马栏河,河上有两座桥:新华桥和光明桥.河的两岸是两条平行的公路:黄河路与高尔基路,某测量员在A点测得.如果你不通过测量,能否猜出的度数是多少?

王亮:.

老师:他到底猜得对不对呢?下面我们要先做一个实验,拿出尺子,画两条平行的直线a、b,第三条直线l和这两条直线相交,标出所得到的角,用量角器量出各个角的度数,观察当两直线平行时,各种角有什么关系.

学生动手按要求做实验.

老师:将你发现的规律与组内同学进行交流.

学生以小组为单位进行交流与研究.

老师:请每组派一名代表将你们得到的规律写到黑板上,并结合你画的图讲解你们组的结论.

第1组学生代表:如果两直线平行,同位角就相等。

七年级上册数学课件 篇2

1 知识与技能:

使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

2 过程与方法:

通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

3 情感态度与价值观:

让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

20×3= 7×50= 6×3=

20×5= 4×9= 8×60=

24÷6= 8÷2= 12÷3=

42÷6= 90÷3= 3000÷5=

有80面彩旗,每班分20面,可以分给几个班?

(1)提出问题,寻找解决问题的方法。

师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

学生汇报:

预设学生可能会有以下两种口算方法:

B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成

为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)

这样我们就把除数是整十数的转化为我们已经学过的表内除法。

(4)师小结:

同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

预设:83接近于80,80除以20等于 4,所以83除以20约等于4。

19接近于20,80除以20等于 4,所以80除以19约等于4。

(3)你是怎么这样快就算出的呢?

A.因为15÷5=3,所以150÷50=3。

B.因为3个50是150,所以150÷50=3。

这一题跟刚才分彩旗的口算方法有不同吗?

都是运用想乘算除和表内除法这两种方法来口算的。

师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

口算练习:150÷30 240÷80 300÷50 540÷90

你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

(2)谁想把你的方法跟大家说一说。

(4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?

观察每道题,怎样很快说出下面除法算式的商?

如果估算的话把谁估成多少。

2.算一算、说一说。

(1)除数不变,被除数乘几,商也乘几。

(2)被除数不变,除数乘几,商反而除以几。

(1)一共要寄240本书,每包40本。要捆多少包?

你能找到什么条件、问题。你会解决吗?

(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

这节课你有什么收获?还有什么问题?

本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

有80面彩旗,每班分20面,可以分给几个班?

80÷20=

七年级上册数学课件 篇3

学习目标:

1、从实际生活中感受有序数对的意义,并会确定平面内物体的位置。

2、通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会具体-抽象-具体的数学学习过程。

3、培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。

学习重点:

理解有序数对的概念,用有序数对来表示位置。

学习难点:

理解有序数对是有序的并用它解决实际问题,

学习过程:

一、学前准备

预习疑难

二、探索与思考

1、观察思考:观察下图,什么时候气温最低?什么时候气温最高?你是如何发现的?

2、想一想:你看过电影吗?在电影院内,确定一个座位一般需要几个数据,为什么?

(1)如何找到6排3号这个座位呢?

(2)在电影票上6排3号与3排6号有什么不同?

(3)如果将6排3号简记作(6,3),那么3排6号如何表示?

(4)(5,6)表示什么含义?(6,5)呢?

3、结论:

①可用排数和列数两个不同的数来确定位置;

②排数和列数的先后顺序对位置有影响。

4、概念:

有序数对:用含有的词表示一个位置,其中各个数表示不同的含义,我们把这种两个数a与b组成的数对,叫做有序数对,记作(a,b)。

三、理解与运用

用有序数对来表示位置的情况是很常见的.如人们常用经纬度来表示地球上的地点.你有没有见过用其他的方式来表示位置的?

四、学习体会:

1、本节课你有哪些收获?你还有哪些疑惑?

2、预习时的疑难解决了吗?

五、自我检测

1、小游戏:

怪兽吃豆豆是一种计算机游戏,图中的标志表示怪兽先后经过的几个位置.如果用(1,2)表示怪兽按图中箭头所指路线经过的第3个位置.那么你能用同样的方表示出图中怪兽经过的其他几个位置吗?

2、有趣玩一玩:

中国象棋中的马颇有骑士风度,自古有马踏八方之说,如图六(1),按中国象棋中马的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从日字形长方形的对角线的一个端点到另一个端点,不能多也不能少。

六、方法归类

常见的确定平面上的点位置常用的方法

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

七年级上册数学课件 篇4

总时:1时

第1时, 备时间:开学第十五周 上时间:第十六周

一、教学目标: (一)教学知识点

1.与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据.

2 .近似数和有效数字 并按要求取近似数.

3.从统计图中获取信息 并用统计图形象地表示数据.

(二)能力训练要求

1.体会描述较小 数据的方法 进一步发展数感.

2.了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用.

3.能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念.

(三)情感与价值观要求:1.培养学生用数学的意识和信心 体会数学的应用价值. 2.发展学生的创新能力和克服困难的勇气.

二、教学重点:1.感受较小的数据.

2.用科学记数法表示较小的数.

3.近似数和有效数字 并能按要求取近似数.

4.读懂统计图 并能形象、有效地用统计图描述数据.

教学难点:形象、有效地用统计图描述数据.

教学过程:.创设情景 引入新

三.讲授新:请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。

1.哪些数据用科学记数法表示比较方便?举例说明.

2.用科学记数法表示下列各数:

(1)水由氢原子和氧原子组成 其中氢原子的直径约为0.000 000 0001米.

(2)生物学家发现一种病毒的长度约为0.000043毫米;

(3)某种鲸的体重可达136 000 000千克;

(4)20xx年5月19日 国家邮政局特别发行“万众一心 抗击‘非典’”邮票 收入全部捐给 卫生部门 用以支持抗击“非典”斗争 其邮票的发行量为12 500 000枚.

四.时小结:我们这节回顾了以下知识:

1.又一次经 历感受 了百万分之一 进一步体会描述较小数据的方法:与身边事物比较 进一步学习了利 用科学记数法表示较小的.数据.

2.在实际情景中进一步体会到了近似 数的意义和作用 并按要求取近似数和有效数字.

3.又一次欣赏了形象的统计图 并从中获取有用的信息.

(1)根据上表中的数据 制作统计图表示这些主要河流的河长情况 你的统计图要尽可能的形象.

(2)从上表中的数据可以看出 河流的河长与流域面积有什么样的联系?

(3)在中国地形图上找出主要河流 你认为河流年径流量与河流所处的地理位置有关系吗?

制作形象的统计图 首先要处理好数据 即从表格中计算出这几条河流长度的比例 然后选择最大或最小作为基准量 按比例形象画出即可.

(1)形象统计图(略)只要合理即可.

(2)从表中的数据看出 河流越长 其流域面积越大.

(3)河流的年径流量与河流所处的位置有关系.

五.后作业:

七年级上册数学课件 篇5

本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。

正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。

关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。

这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.

为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。

1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。

2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…

3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。

整数和分数统称为有理数。1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。

2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。

3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。

4)分数和小数的区别:

分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。

5)到目前为止,所学过的数(除π外)都是有理数。

七年级上册数学课件 篇6

教学目标:

1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

教学过程

一、创设问题的情境,激发学生的学习热情,导入课题

二、做一做

出示投影3提问:

1、图1—3中,A,B,C之间有什么关系?

2、图1—4中,A,B,C之间有什么关系?

3、从图1—1,1—2,1—3,1|—4中你发现什么?

学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议

1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、你能发现直角三角形三边长度之间的关系吗?

在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c,那么我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

四、想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

七年级上册数学课件 篇7

七年级上册数学课件


数学,作为一门抽象而又具有逻辑性的学科,一直以来都是让学生们头疼的科目之一。随着时代的发展和教育方法的改革,数学课件应运而生,为学生呈现了一种全新的学习方式。七年级上册数学课件成为了教师们教学的得力助手,同时也使学生们对数学有了更加深入的理解。


七年级上册数学课件设计精巧,形式多样。课件内包含了丰富的图表、公式和例题,这不仅为学生们提供了更多观察和理解数学问题的角度,也有助于激发学生的学习兴趣。课件中的图表可以通过简单的操作进行放大、缩小和旋转,使学生能够更加清楚地观察和理解数学问题的变化规律。公式和例题的展示也比传统的黑板书写方式更加清晰和直观,学生可以更加轻松地理解和记忆。


在七年级上册数学课件中,还融入了丰富的多媒体元素,如音频、视频和动画等。这些元素的运用不仅可以吸引学生们的注意力,还能够帮助学生们更好地理解和掌握数学知识。例如,在讲解平行线的概念时,课件中可以播放一个动画,通过模拟两条平行线之间的关系,使学生能够更加直观地理解概念。数学题目的解题过程也可以通过视频的方式展示,这让学生们可以看到一个真实的解题过程,更加深入地理解解题思路。


七年级上册数学课件还强调了互动性。通过课件中的交互界面,学生们可以积极参与到课堂中来。例如,在学习平方根的计算方法时,课件中可以设置一个计算器模拟器,学生们可以自己操作计算器进行计算,从而更好地理解和掌握计算方法。课件还提供了一些小游戏和练习,学生们可以通过这些小游戏和练习来巩固所学知识。


小编认为,七年级上册数学课件的出现为数学教学带来了新的机遇和挑战。它不仅可以提供更多元化的学习内容和方式,还可以激发学生对数学的兴趣和好奇心。课件的使用也需要教师们善加引导和利用,教师们需要根据学生的实际情况,合理选取和运用课件中的内容,确保教学效果最大化。相信在教师和学生的积极努力下,七年级上册数学课件将能够帮助学生们更好地掌握数学知识,拥有更好的数学思维能力。

七年级上册数学课件 篇8

教学目标

1 知识与技能:

使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

2 过程与方法:

通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

3 情感态度与价值观:

让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

教学重难点

1 教学重点:

掌握用整十数除的口算方法。

2 教学难点:

理解用整十数除的口算算理。

教学工具

多媒体设备

教学过程

1 复习引入

口算。

20×3= 7×50= 6×3=

20×5= 4×9= 8×60=

24÷6= 8÷2= 12÷3=

42÷6= 90÷3= 3000÷5=

2 新知探究

1、教学例1

有80面彩旗,每班分20面,可以分给几个班?

(1)提出问题,寻找解决问题的方法。

师:从中你能获取什么数学信息?

师:怎样解决这个问题?

(2)列式 80÷20

(3)学生独立探索口算的方法

师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

学生汇报:

预设学生可能会有以下两种口算方法:

A.因为20×4=80,所以80÷20=4 这是想乘算除

B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成

为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)

这样我们就把除数是整十数的转化为我们已经学过的表内除法。

(4)师小结:

同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

把你喜欢的方法说给同桌听。

(5)检查正误

师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)

(6)用刚学会的方法再次口算,并与同桌交流你的想法

40÷20 20÷10 60÷30 90÷30

(7)探究估算的方法

出示:83÷20≈ 80÷19≈

师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

师:谁想把你的方法跟大家说一说。

预设:83接近于80,80除以20等于 4,所以83除以20约等于4。

19接近于20,80除以20等于 4,所以80除以19约等于4。

2、教学例2

(1)创设情境引出问题

师:谁会解决这个问题?

150÷50

(2)小组讨论口算方法

(3)你是怎么这样快就算出的呢?

A.因为15÷5=3,所以150÷50=3。

B.因为3个50是150,所以150÷50=3。

这一题跟刚才分彩旗的口算方法有不同吗?

都是运用想乘算除和表内除法这两种方法来口算的。

师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

口算练习:150÷30 240÷80 300÷50 540÷90

3、估算

(1)探计估算的方法

师:你能知道题目要求我们做什么吗?

你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

(2)谁想把你的方法跟大家说一说。

(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

(4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?

3 巩固提升

1、独立口算

观察每道题,怎样很快说出下面除法算式的商?

如果估算的话把谁估成多少。

2、算一算、说一说。

(1)除数不变,被除数乘几,商也乘几。

(2)被除数不变,除数乘几,商反而除以几。

3、解决问题

(1)一共要寄240本书,每包40本。要捆多少包?

你能找到什么条件、问题。你会解决吗?

240÷40 = 6(包)

答:要捆6包。

(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

出示条件:一共有120个小故事,每天看1个故事。

问题:看完这本书大约需要几个月?

问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

120÷30 = 4(个)

答:看完这本书大约需要4个月。

课后小结

这节课你有什么收获?还有什么问题?

本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

板书

口算除法

有80面彩旗,每班分20面,可以分给几个班?

80÷20=

20233年级数学上册课件


教案课件是老师教学工作的起始环节,每天老师都需要写自己的教案课件。 学生反应是教师课堂教学有效性的重要体现。根据您的要求,我们为您整理了“3年级数学上册课件”,欢迎借鉴愿您在学习中取得突破!

3年级数学上册课件 篇1

教学内容:

观察物体,教材第90——91页的内容。

教学目标:

1、让学生通过实际的观察、比较,初步体会从不同的位置观察物体所看到的形状是不一样的,并学会根据看到的形状正确地判断观察者的位置。

2、使学生在观察物体的过程中发展初步的空间观念,发展数学思维,提高解决问题的能力,培养学习数学的积极情感。

教学重点:

辨认简单物体从不同角度观察到的形状,发展学生的空间观念。

教学难点:

体会从不同的角度观察物体所看到的形状可能不同。

教学过程:

一、初步感知,形成表象。

1、分别出示教室前、后两张照片。

提问:这是什么地方?这一张呢?为什么拍出来的两张照片不一样呢?

请仔细观察两张照片,说说为什么不一样?

小结:因为拍照的人站的位置不一样,所以拍出来的照片不一样。

2、揭题:今天我们就要学习从不同的角度来观察物体。

(板书:观察物体)

二、游戏活动,加深体验。

1、游戏:画图形。

方法:以四人为一组,分别围坐在桌子的四面,在桌子的中间放一个水壶,每人把自己看到的画下来。

学生自己活动,交流所画图形,并换位观察、体验。

小结:由于观察位置的不同,看到的形状可能不一样。

2、游戏:找图片。

方法:组长转动水壶,使把手正对着一个小朋友,每人根据自己看到的找出一幅画,组长再转动水壶,重新寻找,过程同上。

3、游戏:找位置。

方法:请组长把四幅图片合在一起,打乱顺序,然后给组里的每一个小朋友发一张,学生根据自己手里的图片找一找自己的位置,坐在自己的位置上,师生互动,进行相应的评价。

三、实践巩固,提升能力。

1、连一连:课本第90页。

学生先看图想一想每个小朋友看到的小猴会是什么样的,再独立连一连,集体交流时说说自己的想法。

2、“想想做做”第1 题,学生联系生活经验进行判断,指名说说理由。

3、完成“想想做做”第2 题,完成后全班交流订正。

小结:今天我们从不同的角度观察了物体,知道由于观察位置的不同,所看到的情况是不一样的。

四、拓展延伸,引导观察。

生活中有许多物体,小朋友课后可以自己找一些物体,从不同的角度去观察,看看会看到哪些不同的样子?把你看到的情况画下来。

3年级数学上册课件 篇2

说教材分析:

本单元学习除法的竖式计算,“买新书”这节课的主要内容是连除和乘除的混合运算,是本学期学习解决问题的一个难点。教学时应结合具体情境,让学生提出问题并选择适当的方法解决问题。我知道解析应用题的核心是分析数量关系。因此在教学中用三个环节处理这个问题,首先采用看图找信息、根据信息提问、读题、找关键句子等过程让学生理解题目的意思上;其次在理解题意的基础上,采用了让学生汇报思路想法,教师点拨的方式,找到解决问题的办法。

学生学情分析:

学生在此之前学习过很多有关应用题的问题,如:比多比少问题、连乘法问题等;也曾学习了两位数、三位数除以一位数的有关计算。学生对本节课内容的理解,最大的困难不是计算的问题,而是分析数量关系。学生学习数学时能正确分析把握数量关系一直是个难点。需要对加、减、乘、除的意义有深刻的理解,而且需要从实际生活事件中进行抽象。三年级的学生已经学习了乘加、乘减、除加、除减、连乘等两步运算,而对于连除法数量关系是第一次接触。面对这种实际情况,要达到预期的目标要求,就需要借助一些直观的手段和一定的方法。学生由于个性的影响,遇到解决问题的题型,个别学生没有搞清题意就着急动手计算;再有部分学生不分析数量关系,因此理解题意不够准确。

教学目标:

1、在解决现实问题的过程中理解连除、乘除混合式题的运算顺序,能够正确运算。

2、能灵活运用不同的方法解决生活中的简单问题,逐步提高解决问题的能力。

3、经过独立分析,合作交流的过程获得良好的情感的体验,感受到数学知识在实际生活中的应用。

教学重点:在解决现实问题的过程中理解连除、乘除混合式题的运算顺序,能够正确运算。

教学难点:能灵活运用不同的方法解决生活中的简单问题,逐步提高解决问题的能力。

教学方法:自主探索、合作交流、讲解

教学过程:

一、谈话导入:

这节课我们主要来学习运用以前所学的数学知识来解决生活中的数学问题。

二、提出问题、解决问题:

问题一:管理图书室的刘老师在整理图书时,遇到了一个数学问题,板书:“学校图书室买来200本书,放在2个书架上,每个书架有4层。”你能根据这几个数学信息提出数学问题吗?

1、学生提出数学问题,师适时板书。

2、我们先来解决“平均每层放多少本书?”这个问题。

3、师:谁能把这些信息和刚才的问题完整的描述一遍。

(先指名读,然后全班齐读题目。)

4、师:同学们思考这个问题怎么解决?

(有思路的同学把手举起来,试着在练习本上列出算式。)

5、汇报:找不同的写法到黑板板书。

(1)200÷2=100(本);100÷4=25(本)。

师:这样列式你是怎么想的呢?请结合这道题的信息,给大家讲讲。

(2)200÷2÷4=100÷4=25(本)。

师:这样列算式解决问题的想法和(1)这种想法一样吗?

3年级数学上册课件 篇3

教学目标:

1、初步认识乘法竖式的写法,会列竖式计算表内乘法。

2、培养学生的自主学习的能力,体验成功的快乐,增强学习的兴趣,树立学好数学的信心,养成认真书写的习惯。

教学重点、难点:

初步体会竖式中相同数位上的数要对齐的基本规则。

教学用具:

直尺、竖式卡片。

教学进程:

一、导入

1、谈话:每天中午我们班的同学都在教室里分组看书。这里有两组同学在看书,每组有4人,已经有多少人在看书?

2、提问:你能列出乘法算式算一算吗?

3、点名说说乘法算式中各部分的名称。 4指出:加减法可以用竖式计算,乘法也可以用竖式计算。

二、探索感悟

1、教学2×4的竖式。

2

× 4 8

尝试:你会列式计算2×4吗?让学生尝试自己列列看,点名板演。

确认:肯定板演正确的竖式,表扬写对的学生,并让他们说说怎么想到这样写竖式的。

辨析:你认为哪一种写法是正确的?先跟同学讨论,再在班里说说你的想法。让学生在全班交流列竖式要注意什么,得出正确的格式。

指出:积的`个位应与乘数的个位对齐。

3、小结:刚才我们用竖式计算了乘法,你们觉得乘法的竖式好写吗?提醒学生注意事项。

三、练习

1、“想想做做”第1题。 在课本上独立完成。点名板演,集体纠正。

2、做“想想做做”第2题。 通过乘法竖式与加减法竖式的比较,使学生明确:他们的相同点是,横线上方都是参与运算的数,横线下方都是得数,相同数位上的数都要对齐。让学生用 竖式独立完成。

3、“想想做做”第3题。 让学生看图,说说已知哪些条件,要求么问题,再鼓励学生各自解答。

4、“想想做做”第4题。 让学生说说:填空时想的是哪句口诀?是怎样想到这句口诀的?

四、课堂总结

通过这节课的学习你对乘法竖式了解了多少?你自己会列乘法竖式计算了吗?

五、布置作业

完成补充练习相应的题目。

板书设计:

2×4 =

2

× 4 8

3年级数学上册课件 篇4

教材内容:

人教版课标实验教材三年级上册第104—105页,学习时间在12月中旬。

教材分析:

在现实世界中,有些事件的结果在一定的条件下可以预知,即确定现象;有些事件的结果在一定的条件下无法事先预知,即随机现象(不确定现象)。为了帮助学生认识现实生活中的确定现象和随机现象,《课程标准》第一学段新增了属于概率知识范畴的内容《可能性》。旨在引导学生观察分析生活中的现象,初步体验现实世界中存在着不确定现象,认识事件发生的确定性和不确定性。教材选取了“新年联欢会上抽签表演节目”的现实情境,引入本单元的学习内容。通过主题图及例1、例2的教学,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的。

设计思路:

1.用学生熟悉的生活情境及感兴趣的游戏活动作为教学素材,帮助学生理解数学知识。

2.引导学生经历做数学的过程,让学生在数学活动中体验不确定现象和可能性。

教学目标:

1.学生初步体验生活中有些事件的发生是确定的,有些则是不确定的;

2.学生了解一定、不可能、可能的意义,能够用“一定”、“不可能”、“可能”描述生活中的现象;

3.学生感受“一定”、“不可能”、“可能”在一定条件下可以互相转化。

教学重难点:理解可能性,建立正确的随机的概念。

教学过程:

一、创设情境

元旦节快到了,东方超市为了吸引顾客,准备举行一次摸奖活动。摸奖的规则是:在一个盒子里放一些球,凡是一次购物满50元的顾客,都有一次摸奖机会。摸到红球有奖,摸到白球没有奖。如果请你设计,你能想出几种放球的方案?

板书学生的方案:全放红球全放白球既放红球又放白球

[设计意图]把教材中呈现的“新年联欢会上抽签表演节目”的情境改变为更贴近学生、学生更熟悉、更现实的摸奖的情境,为更好的引导学生经历将现实问题抽象成数学模型并进行解释与应用作好心理上的准备。

二、第一次摸球活动,体验事件发生的确定性与可能性

㈠学生小组合作摸球,感受事件发生的确定性与可能性。

提问:根据你们的方案,会出现什么结果呢?

小组合作,用老师提供的学习材料(摸球用的盒子、5个红球、5个白球、试验结果记录单)依次进行摸球试验,并把试验的结果记录下来。

小组合作要求:1.小组长组织,确定记录人和汇报人;2.摸前搅和一下,摸时不能看,按一定顺序来摸,次数不定;3.每摸一次,就把结果记录下来;4.摸完后,观察记录单,能发现什么。

试验结果记录单:

⑴全放红球

摸球次数

第1次

第2次

第3次

第4次

第5次

第6次

第7次

第8次

……

球的颜色

⑵全放白球

摸球次数

第1次

第2次

第3次

第4次

第5次

第6次

第7次

第8次

……

球的颜色

⑶既放红球又放白球

摸球次数

第1次

第2次

第3次

第4次

第5次

第6次

第7次

第8次

……

球的颜色

㈡组织学生交流,认识“一定”、“不可能”、“可能”。

学生汇报试验结论,并说一说你们是怎样试验的。如,汇报全放红球试验时,说一说放了几个红球,摸了几次,每次摸到的是什么颜色的球,能摸到其它颜色的球吗?为什么?

根据学生的汇报完成板书:

可能性

一定

结果确定{

不可能

结果不一定─可能

㈢用“一定”、“不可能”、“可能”描述摸球试验的结论。

[设计意图]为学生创设了开放的学习空间,学生没有老师的限制,只有根据学习目标的自主学习活动,盒子里放多少个球,摸多少次……一切都由学生做主。教师的作用发挥在汇报过程中的引导学生反思上,让学生通过第一次摸球活动,深深地感受到不管盒子里放几个球,也不管摸几次,在不看的前提下,如果只放红球,就一定只能摸到红球,不可能摸到其它颜色的球;如果既放红球,又放白球,就既可能摸到红球,又可能摸到白球。在对比中更好地体会确定事件和不确定事件。

三、判断事件发生的确定性与可能性

用“一定”、“不可能”、“可能”不仅可以描述摸球试验的结论,还可以描述现实世界中的自然想象和社会现象。

3年级数学上册课件 篇5

各位老师大家好。今天我说课的内容是:北师大义务教育课程标准实验教科书小学数学三年级上册《0×5=?》。

教材分析:

《0×5=?》是三年级上册第四单元的第二个内容。学生先学习两、三位数乘一位数的乘法,然后再发现有关0的乘法规律的基础上学习因数中间或末尾有0的乘法,最后学习连乘。《0×5=?》这部分内容比较抽象,因为一个数和0相乘得0,学生不易理解,容易和加法混淆,乘积怎样写也容易出现错误;几乘0得0后,很容易忘记加进位上来的数。为了分散难点,教材把一个因数中间有 0和一个因数末尾有0的乘法安排在学生学会了一位数乘二、三位数的一般运算方法之后进行讲练,这样可使难点分散,便于学生集中精力学习在乘的过程中,0的具体处理方法。学习《0×5=?》,有利于学生完整地掌握整数乘法的计算方法,并为以后进一步学习连乘乃至于学习小数乘法打好基础。

教法学法:

教师的教是为了学生更好的学。计算教学都是从简单到复杂螺旋上升的,最基础的计算原理和方法支持了这样的发展提高。本节课的教学以学生为主课件情景为背景,通过探索每盘苹果顺次减少至0的过程,计算苹果总数,来激发学生的学习兴趣。然后通过试一试计算因数中间或末尾有0的乘法,引导学生动脑,动眼,动手使学生变苦学为乐学,充分利用学生已有的计算知识和经验,把新旧知识结合在一起,体会计算时的相同点,促进认知同化,完善认知结构。把数学课上得有趣、有益、有效。

教学目标:

1. 探索并掌握“0”和任何数相乘都等于“0”的规律。

2. 探索并掌握一个因数中间或末尾有0的计算方法,理解算理。

3. 能应用所学知识解决学习中的简单问题,培养学生应用的意识和能力。

4、经历与他人交流各自算法的过程,培养学生学会合作学习。

教学重点:

1. 掌握“0”和任何数相乘都等“0”的规律。

2. 掌握一个因数中间或末尾有0的计算方法。

教学过程:

“将课堂还给学生,让学生成为课堂的主体”、“努力营造学生在教学活动中自主学习的时间和空间”从这种设计理念出发,为了更好的达到教学目标,突出重点,增强教学效果,使学生计算能力得到真正发展,我对本节课设计有以下几个环节:复习,问题情景,建立模型,解释应用,全课总结五个环节。

一、复习

通过口答一个五是( ) 二个五是( ) 三个五是( )口答完毕让学生说说第2、3题的加法和乘法算式,口算7×5= 4×5= 8×5 = 5×5 = 9×5 = 6×5 = ,口答完毕让学生说说任意2题表示的意思。目的是让学生回忆整数乘法的意义,熟练掌握整数乘法的意义

二、问题情景

通过创设情境

(1)5个盘子,每盘放3个苹果,提问:这里有几盘苹果?每盘有几个?一共有几个苹果,用加法怎么列式?用乘法怎么列式?然后每盘苹果顺次减少至0,都让学生列出加法算式和乘法算式。目的是让学生真正弄懂0的基本含义,整数乘法的意义。用有趣的情景激发学生的学习兴趣。

(2)推理归纳。

根据0×5=0想一想:0×6,0×7,0×8。……又是得多少呢?

学生回答后,让学生做课本P34“算一算”3道题,然后指名学生回答口算结果。(0×3=0,7×0=0,0×26=0)

引导学生归纳“0与任何数相乘,结果都是0”的结论。目的是培养学生的推理归纳能力。

(3)小结、深化。

再次引导学生认识:0乘几和几乘0都得0,0乘0也得0,所以0和任何数相乘都是0。目的是强化0与任何数相乘,结果都是0的规律。

三、建立模型

通过小组合作学习,教师指导完成课本P34“试一试”中1、2题,让学生初次掌握一个因数中间或末尾有0的计算方法,理解算理。培养学生合作、探究精神。

四、解释应用

1、课本第35页练一练。(要求用竖式计算)

学生独立完成后进行全班交流。

2、用你喜欢的方法算。

21×3 43×2

201×3 403×2

210×3 430×2

全班完成后交流,把你的算法告诉其他同学,让学生体验算法多样化。

3、练习设计。

我买20枝铅笔和30本书,每枝6元,每本9元,一共需要多少钱?

目的是检验学生是否会用学过的方法计算一个因数中间或末尾有0的乘法,是否会解决涉及到的简单的'实际问题。

五、全课总结

这节课你学到了什么?你认为一个因数中间或末尾有0的乘法竖式计算时要注意什么?