圆锥的认识课件。
资料是时代的记录,它是产生于人类实践活动。在我们的平时工作生活中,会经常需要参考资料。有了资料才能更好的在接下来的工作轻装上阵!所以,关于资料你究竟了解多少呢?或许你需要"圆锥的认识课件"这样的内容,供大家参考,希望能帮助到有需要的朋友。
圆锥的认识课件 篇1
教学过程:
一、导入新课
出示一个圆柱体(用一个圆柱体外壳套住一个圆锥体)
师:这是一个圆柱体,谁能说说它有什么特征?
生:……(生边说师边板书)
师:现在老师用一块布把这个圆柱体遮住(边说边演示),同学们想一想如果这个圆柱体的上底面慢慢的缩到圆心时,那么这个圆柱体将变成怎样的一个物体呢?你能试着描述一下吗?
生1:下面大大的,上面尖尖的。
生2:下面是圆形,上面是一个顶点。
生3:下面是圆形的,上面是尖尖的,旁边是一个曲面,从上到下慢慢变大。
师:你们能在本子上把这个物体的形状试着画下来?(叫一生到黑板上画)
生:(在黑板上画出一个圆锥体)
师:现在看一看,老师能不能把这个圆柱体变成你们说的或画的那样?
(师喊一、二、三,揭开遮在圆柱体上面的布,露出一个圆锥体)
师:像你们说的或画的那样吗?
生:像。
师:这个物体叫圆锥体。这节课老师就和同学们一起来研究圆锥体的有关知识。(师边说边板书:圆锥的认识)
二、探索研究
师:在日常生活中你们还见过哪些物体的形状是圆锥体的?
生:举例(陀螺、漏斗、沙子、小麦等堆在地面时的形状等)
(一)圆锥形状的认识。
引导观察特征:
(1)取出自己准备的圆锥体学具,请大家看一看,摸一摸,与圆柱比一比,你看到了什么?摸到了什么?说给同桌听。
(2)让一生上来边指边说,回答后师板书:
顶点:1个
面:2个 底面(圆) 侧面(曲面)
(3)同桌互相指着说一遍。
师讲解并示范画:画透视图的时候应该先画一个椭圆,然后在椭圆的正上方画上顶点,最后把顶点与底面连起来。
(二)圆锥大小的研究
1、师:同学们,圆锥有大有小,你知道圆锥的大小与什么有关系?
比较红色和黄色圆锥体,你发现什么?(圆锥体的大小与底面的大小有关)
比较红色和绿色圆锥体,你又发现了什么?(一个高、一个低,圆锥体的大小与高有关)
2、圆锥高的认识
(1)高在哪里?两人一组指一指,说一说。谁愿意指给大家看?他指得对吗?有没有不同意见?
(2)师指母线,问:这条是不是圆锥的高?为什么不是?你能举个例子驳倒他吗?师出示等高但母线不等的两圆锥,测量母线的长,发现长短不一,得出母线不足以代表圆锥的高
(3)你能用自己的话说说什么是圆锥的高?(生回答的基础上,电脑显示,闪烁顶点和圆心,再连起来画一条虚线。进一步明确圆锥的高的概念:从圆锥的顶点到底面圆心的距离是圆锥的高)
(4)圆柱的高有无数条,圆锥的高有几条?为什么? (师在黑板上作高,板书:1条)
(5)在练习纸上的立体图上画高,标上字母h。
3、圆锥高的测量
(1)刚才我们在透视图上找到了圆锥的高,那像这样的物体(出示圆锥体实物),它的高看得见吗?看不见怎么能知道它高多少呢?你有办法吗?下面就请同学们四人一组,测量黄色圆锥体和绿色圆锥体的高,小组内先讨论一下,再利用手中的工具,动手试试看,有困难的可以看书本。
(2)汇报测量的步骤及测量结果。你们小组测出来是多少?你们呢?还有不同的结果吗?
你们是怎么测的?来,上台演示一下。大家是这样测的吗?
(3)师问:其实,老师让你们测的黄色圆锥和绿色圆锥的高度都是一样的,为什么测量结果不太一致呢?
师:那么你认为测量时要注意什么?
注意:圆锥平板必须放平、尺子必须竖直、读数时一定要读平板下沿与直尺交会处的数值。
(4)为什么垫板要放平,尺子要竖直?(其实这是一个长方形,长方形对边相等,利用这一原理,我们把看不见的高平移到圆锥外面来测了。师在透视图上作图演示。)
(5)师:用刚才我们总结的方法以及注意点再测红色圆锥体的高,看这次我们测的结果是否一致?(生合作测量,并汇报。)
师:有没有不同意见?
4、认识圆锥侧面展开图
(1)师:我们已经学习过圆柱,哪位同学能说一说圆柱的侧面展开后是什么图形?
学生回答出圆柱的侧面展开图是长方形后,师设问:“那么,请大家想一想,圆锥的侧面展开后会是什么图形呢?”
生答。
(2)验证:究竟谁说得对呢?下面我们通过实验来看看圆锥的侧面展开后是一个什么图形。
指导学生把圆锥体侧面沿着顶点到圆周的一条线段剪开,使学生看到圆锥的侧面展开后是一个扇形。展开后还可以再把它合拢,恢复原状,使学生加深对圆锥侧面的认识。
设问:圆柱的侧面展开是什么图形?圆锥的侧面展开又是什么图形呢?
生:扇形。
师:对,我们通过刚才的实验知道了:圆锥侧面展开后是一个扇形。教师把侧面展开图贴在黑板上。
5、对圆锥有一个完整的认识。
(1)出示一个三角形的硬纸,贴在木棒上。如图所示:
(2)转动小旗,看一看转出来的形状。
①猜一猜:转出来是什么形状?
②自己动手快速转动小旗,验证自己的猜想。
(3)小旗的三条边分别是圆锥体的什么?
一时回答不上来的,可以先同桌交流一下。明确直角三角形的两条直角边分别是圆锥的底面半径和高。
圆锥的认识课件 篇2
教学内容:教科书23—24页例1
教学目标:
1.认知目标:使学生在具体的情境中认识圆锥,掌握圆锥的特征,会看圆锥的平面图。
2.能力目标:培养学生的操作能力,观察能力,思维能力和灵活运用知识的能力。
3.情感目标:用生活中的圆锥让学生体会所学知识的生活价值,培养学生热爱数学学习的情感、态度。
教学重点:了解圆锥的特征。
教学难点:测量圆锥的高。
课前准备:要求每个学生用教科书图样做一个圆锥的模型,并让学生收集一些圆锥形的实物,教师准备一个圆锥形物体,一块平板(或玻璃),一把直尺。
教学过程:
教师活动
知识点
学生活动
一、初步感知
教师示出圆锥体铅锤实物、圆锥型漏斗实物。
指出这是圆锥体实物。
同学们能指出生活中的圆锥体吗?
现在我们做一个游戏,同学们看大屏幕上的画面,注意出现的圆锥体的镜头。同学们举手抢答出圆锥体物体。
感受圆锥在生活中的存在形式。
认识近似圆锥实物和模型及各部分的名称。
学生结论:
圆锥体东西好像不多,只有铅锤,漏斗,沙堆,铅笔尖等。
学生找出了:煤堆;粮堆;帐篷;削好了的铅笔尖;金字塔像,但不是圆锥;圆锥形凹槽。
二、探究新知
(一)圆锥的认识
1、演示动画“圆锥的形成”
(1)一个长方形通过旋转,可以形成一个圆柱体,那么你们知道圆锥体是怎样形成的吗?
(2)多媒体演示直角三角形绕一条直角边旋转一周的轨迹是一个圆锥体。绕另一条直角边旋转一周的轨迹也是一个圆锥体。分别闪烁底面半径和高。
2、教师提问:
(1)圆柱体有哪些特征?
(2)什么叫圆柱的高?
3、学习圆锥体。
提问:
(1)圆锥体有哪些特征?
(2)什么叫圆锥的高?
4、教师小结:
(1)(演示动画“圆锥体的认识”)
(2)测量圆锥的高。
①引导学生讨论:圆锥有几条高?
②用直尺和三角板如何测量圆锥的高。
教师巡回参与讨论,指点方法,关键解两个三角板的位置问题。
教学圆锥体的特征:
侧面、底面、高、顶点、底面圆心。
(1)圆锥有一个顶点,底面是一个圆。
(2)圆锥的侧面是一个曲面。
(3)从圆锥的顶点到底面圆心的距离是圆锥的高。
学生回答圆柱特征。
学生观察、触摸圆锥体模型,感受圆锥体有几个面。学生指出侧面、底面、高、顶点、底面圆心。
学生讨论并用直尺和三角板测量圆锥的高。
学生总结方法:用大小两个三角板,保证高与桌面垂直,标高线与垂直三角板垂直。还要注意减去没有刻度的0。5厘米。
三、巩固反馈
1.请你说出圆锥各部分名称.
2.请你说出圆锥的特征.
3.指出下列各图是由哪些图形构成的?
圆锥各部分名称.
学生讨论后汇报
四、全课总结
今天这节课你学到了哪些知识?圆锥体和圆柱体有什么区别?
圆锥体的特征
学生总结圆锥体和圆柱体的区别
板书设计:
圆锥的认识
圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
圆锥的认识课件 篇3
教学目标:
1.使学生认识圆锥,知道圆锥的各部分名称。
2.掌握圆锥的特征,学会测量圆锥的高。
3.培养学生的有序观察、动手操作能力和判断能力,发展学生的空间观念。
教学重点:圆锥的特征
教学难点:建立空间观念
教学用具:多媒体软件
教学过程
一。 以旧引新,激发兴趣
1.复习圆柱的各部分名称和特征
(电脑显示圆柱的几何形体)师问:同学们,这是我们学过的什么形体?它的各部分名称和特征是怎样的呢?(学生边说教师边用电脑显示有关部分的名称)
2.导入新课
师:现在老师把这个圆柱变一变,从上底面的圆心向下底面圆周切削,就得到一种新的形体,我们把这种形体叫做圆锥体,简称圆锥。(教师边说边用电脑显示,如下图)
电脑显示完后,教师说:“这就是我们今天这节课所学的内容。(板书课题:圆锥的认识。)我们目前所讲的圆锥,都是直圆锥。
师启发:看到这个课题你们想知道些什么?
二、丰富感知,揭示特征
(一)初步感知,形成表象
1.实物感知,教师逐一拿出圆锥形状的物体,介绍物体的名称,让学生说出它的形状。
2.举例感知。师问:“在日常生活中你们还见到了那些物体或物体的一部分是圆锥形或近似圆锥形的?让学生感受到圆锥形的物体在生活中随处可见。
3.由物及形。电脑显示三种圆锥的实物(谷堆、积木、陀螺)并把它们逐一抽象成平面上的立体图形。
(注意充分演示和直观,让学生感知实物;多媒体显示画面有实物直观抽象为图形直观,使学生在充分感性认识的基础上,加深了对圆柱的了解整体认识。)
(二)认识名称,发现特征
1.认识圆锥
(1)引导学生回忆一下,是怎样认识圆柱的,告诉学生用这种方法学习圆锥的有关知识(板书、名称、特征)然后引导学生观察实物,摸一摸。让学生展开讨论,看到了什么?摸到了什么?
(2)让一名学生到讲台上摸一摸圆锥的侧面和底面,说说摸到了什么?(板书:顶点—一个,侧面——曲面,底面——圆形)
2.认识圆锥的高及特征
(1)激发兴趣:圆柱的高有几条,同学们已经知道了。那为什么叫圆锥的高,它有几条高,在那里呢?
(2)引导讨论,归纳圆锥的高的概念
(3)实物展示圆锥的高,师问:圆锥的高我们看得见,摸得到吗?我们怎样才能看见圆锥的高呢?(教师出示圆锥形萝卜,并用刀沿着它的顶点向底面直径垂直剖开,用红色毛线表示高)继续问:现在看见高了吗?
(4)针对教师用红色毛线垂直拉与斜着拉的情况,师问:什么是圆锥的高?圆锥的高有几条呢?(板书:一条)归纳圆锥高的特征,并弄清圆锥的高与底面是垂直关系。
(5)让学生画出圆锥立体图形的高
(6)辨析练习:(多媒体逐一显示)下面各图标出的圆锥的高正确吗?为什么?
(7)多媒体显示圆锥正确的高
(这一过程充分体现了学生的主体地位,学生通过看一看,摸一摸,想、议、练等一系列活动,使学生从视觉、触觉、动觉上协同感知,理解掌握了圆锥的各部分特征。特别是在认识圆锥的高时,化抽象为具体,使圆锥的高看得见,摸得着;从而学生深刻理解了圆锥的高。)
3.学会测量圆锥的高
师:我们无法看出圆锥的高,但我们可以间接测量它的高,怎样测量圆锥的高呢?
⑴ 引导学生看书自学,说出测量圆锥高的步骤
⑵ 先动画显示测量高的方法,然后引导学生同桌之间相互配合,动手操作测量出手中圆锥的高。
⑶ 再引导学生说一说测量圆锥的高时应注意什么?
⑷ 说说自己测量的圆锥的高的数值
4 .圆锥侧面展开。先让学生动手操作把圆锥的侧面展开,然后问:它的侧面展开是什么形状?
5. 生想象建立圆锥的空间概念
学生手拿圆锥,闭眼边摸边想象。同时放录音:一个圆柱,从上底面的圆心向下底面的圆周切削,就成为一个圆锥,圆锥有一个尖尖的顶点,侧面是一个曲面,里面是一个圆形,从圆锥顶点到底面圆心的距离是圆锥的高,圆锥的高只有一条,圆锥的侧面展开是一个扇形。
(看书自学→图画显示测量方法→学生亲自实践测量,这一过程符合学生的认知规律。学生在量、剪、说的活动中,愉快的获得新知,倍享成功的乐趣。同桌间的合作,体现了团结协作的精神。多媒体和录音机的有机结合,促进了学生技能的形成和空间观念的建立。)
三。巩固练习,深化新知
1. 辨别下面各图哪些是圆锥形的?
2.判断
(1)圆锥的侧面是一个曲面。( )
(2)因为圆柱的高有无数条,所以圆锥的高也有无数条。( )
(3)圆柱的侧面展开是长方形,圆锥的侧面展开是三角形的。( )
(4)从圆锥的顶点到底面任意一点的连线叫圆锥的高。( )
(5)圆锥的底面是圆形。( )
3.引导学生说一说圆锥与圆柱的特征
4.学生质疑
(意图:精心设计有针对性、有层次的练习,既帮助了学生巩固深化所学的知识,又培养了学生灵活运用知识的能力,引导学生质疑,释疑,加深了对圆锥特征的认识。)
四。总结全课
引导学生回忆重点内容进行归纳总结。这节课学习了什么新知识?我们是怎样学会这些知识的?
意图:这样总结,突出了教学重点,使知识条理化、系统化,进一步培养了学生的总结概括能力。)
五。作业布置
反思:本节课,能够以《新课标》为依据,做到很好的把握重点,突出重点,使教学过程始终围绕着教学目标有序地展开。教学中,教师重视学生多种感官参与,通过看、摸、想、议、量、剪、说,调动学生学习的主动性和积极性,让他们在学习知识的过程中,既发展空间观念,又培养了能力。充分发挥多媒体计算机辅助教学功能,启迪学生思维,为学生提供更多的观察、比较、判断的机会,突破了教学难点,提高了教学效率。
圆锥的认识课件 篇4
教学内容:教科书p23-24的内容,p24“做一做”,完成练习四的第1、2题。
教学目标:
1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
2、通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。
3、培养学生的自主探索意识,激发学生强烈的求知欲望。
教学重点:掌握圆锥的特征。
教学难点:正确理解圆锥的组成。
教学过程:
一、复习
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
二、新课
1、认识圆锥
(1)出示生活中的圆锥图(书p23):说说上面这些物体的形状有什么共同特点?
(2)找生活中的圆锥形物体:生活中你见到哪些物体或物体的一部分是圆锥体或近似圆锥体的?(如果学生举例有限,可出示图片:圆锥形煤堆,圆锥形粮堆,圆锥形帐篷等)
(3)观察圆锥形实物的特点:
a.让学生拿着圆锥模型观察和摆弄后,指名说出自己观察的结果。
明确:圆锥有一个曲面,一个顶点和一个面是圆的,等等。
b.圆锥有一个顶点,它的底面是一个圆(在图上标出顶点,底面及其圆心o)
c.圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)
d.让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。
强调:沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高。
(4)小结
圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高。
2、测量圆锥的高
问:圆锥的高我们看得见吗?怎样才能看见圆锥的高呢?
我们无法看见圆锥的高,但我们可以间接测量它的高,怎样测量圆锥的高呢?
引导:由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
学生练习测量圆锥的高。同桌互相检查、交流。
提问:测量圆锥的高时应注意什么?(尺子放平、零刻度的处理)
3、教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)实验来得出圆锥的侧面展开后是一个扇形。
4、虚拟的圆锥
(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三角形制片绕着一条直角边旋转,会形成什么形状?
(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。
三、课堂练习
1、做第24页“做一做”的题目。
让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径。教师行间巡视,对有困难的学生及时辅导。
2、练习四的第1题。
(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。
(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。
3.完成练习四的第2题。
四、总结
关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?
板书设计: 圆锥的认识
顶点(1个)
面:底面、侧面(曲面 )
高(1条)
圆锥的认识课件 篇5
第一课时 圆柱和圆锥的认识
教学内容:
教科书练习五1-4题。
教学目标:
操作、交流等活动中感知并发现圆柱和圆锥的特征,知道圆柱和圆锥的底面、侧面和高。
2、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。
教学重难点:
1、在充分感知的基础上,探索圆柱和圆锥的特征。
2、进一步体验立体图形与生活的联系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。
教学准备:
模型
直角三角形和半圆形的小旗各一面。
预习作业:
1、预习课本第18页例1,认识圆柱和圆锥的.特点。
2、知道什么什么样的形体是圆柱和圆锥。
练习五的1-4题。
教学过程:
一、预习效果检测
1、你预习的两个立体图形,分别叫什么?
127页的图形,用硬纸板做一个圆柱和一个圆锥。
3、反馈练习五的完成情况。
二、合作探究
1、研究圆柱
⑴生活中还有哪些物体的形状是圆柱形的?
出示相关圆柱形实物和模型
⑵引导观察:仔细观察这些圆柱,你能发现什么?
在小组中交流自己的发现。
⑶组织全班交流,教师适当板书:
上下一样粗细有两个圆面一个曲面
⑷认识圆柱各部分的名称:
教师先对照圆柱的直观模型介绍圆柱的底面、侧面和高,再让学生在实物模型上找到圆柱的底面、侧面和高。
2、研究圆锥
⑴生活中还见过哪些圆锥形状的物体?
⑵仔细观察圆锥,你能发现什么?在小组中说一说。
⑶全班交流,教师相机板书:
有一个顶点底面是圆形侧面是一个曲面
⑷认识圆锥的高
出示圆锥的透视图,让学生认识圆锥的高。
⑸在圆锥的实物模型中,相互说说圆锥的顶点、底面、侧面和高。
3、讨论“练一练”。
⑴让学生各自从教材提供的图片中找出圆柱形的和圆锥形的。
⑵交流说一说挑选的理由和不挑选的理由。
三、当堂达标检测
1、做练习五第2题。
⑴引导学生从正面、上面、侧面观察圆柱和圆锥,看分别看到的是什么形状?
⑵在书中连线。
2、做练习五第3题。
⑴出示长方形、直角三角形和半圆形的小旗,引导学生猜想:如果将旗杆快速旋转,想想一下:小旗旋转一周各能成什么形状?
⑵让学生旋转小旗,看猜想是否正确。
⑶如果让你自己设计一个小旗,你想将小旗设计成什么样子的?想象一下,如果也这样旋转一周,会转成什么形状?自己做一做。
3、做练习五第4题。
教学反思:(略)
GZ85.com延伸阅读
圆锥的课件汇集
编辑完“圆锥的课件”后,栏目小编感到辛苦不负责任,我们一直关心你们的需求,希望把我们的网站加入你们的收藏夹,并继续关注我们的更新。为了顺利完成教学任务,老师们需要提早规划每节课的教学课件,每位老师都需要把教案和课件设计得更加完善。
圆锥的课件(篇1)
教学目的与要求:
(1)掌握锥体的等积定值,锥体的体积公式。
(2) 理解"割补法"求体积的思想,培养学生发现问题,解决问题的能力。
教学重点与难点:
公式的推导过程,即"割补法"求体积。
教学方法:
发现式教学 教具:
三棱柱模型、多媒体
1、复习祖暅 原理及柱体的体积公式。
2、等底面积等高的任意两个锥体的体积。
(类比于柱体体积公式的得出)。首先研究等底面积等高的任意两个锥体体积之间的关系。
取任意两个锥体,设它们的底面积都是S,高都是h。
(创造祖暅 原理的条件)把这两个锥体放在同一个平面α上。这时它们的顶点都在和平面α的任意平面去截它们,截面分别与底面相似,设截面和底面顶点的距离是h,截面面积分别是S1、S2,那么:
∵S1/S=h12/h2,,S2/S=h12/h2,
∴S1/S=S2/S,S1=S2。
根据祖日恒 原理,这两个锥体的体积相等,由此得到下面的定理:
定理,等底面积等高的两个锥体的体积相等。
3、三棱锥的体积公式
为研究三棱锥的体积,可类比于初中三角形面积的求法。
在初中,学习三角形的面积公式之前,已知有平行四边形的面积公式,为此,将ΔABC"补"成和它同底等高的平行四边形ABDC,然后沿其对角线BC,将平行四边形"分"成两个三角形,由对称性,得到的ΔABC的面积为平行四边形面积的一半,即为:SΔABC=1/2ah,(a其底边长,h为高)
而今,欲求三棱锥的体积,亦可类比地借助于已知的柱体体积公式。
能否将三棱锥"补"成一个底面积为S,高为h的三棱柱呢?
[可以]以AA'为侧棱,以ΔABC为底面补成一个三棱柱。
也采用"分"的方法,这个三棱柱可分成怎样的三棱锥呢?
(图形没有打印)
[引导学生观察分析]将三棱柱分割成三个三棱锥,如图就是三棱锥1,和另两个三棱锥2、3。
三棱锥1、2的底ΔABA'、ΔB'A'B的面积相等,高也相等(顶点都是C)。三棱锥2、3的底ΔB'CB'、ΔC'B'C的面积相等,高也相等。(顶点都是A')。
∴V1=V2=V3=1/3V三棱柱 ∵V棱柱=Sh ∴V三棱柱=1/3Sh
最后,因为和一个三棱锥等底面积等高的任何锥体都和这个三棱锥的体积相等,所以得到下面的定理。
定理:如果一个锥体(棱锥、圆锥)的底面积是S,高是h,那么它的体积是:V锥体=1/3Sh。
推论:如果圆锥的底面半径是r,高是h,那么它的体积是: V圆锥=1/3πr2h
4、锥体体积公式的应用。
练习1:正四棱锥底面积是S,侧面积为Q,则其体积为: 。
练习2:圆锥的全面积为14πcm2,侧面展开图的中心角为60°,则其体积为 。
练习3:边长为a的正方形,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这个扇形围成一个圆锥筒,求它的体积。
5、课堂小结:1°割补法求三棱锥的思想。
2°锥体的体积公式。
圆锥的课件(篇2)
一、说教材:
2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
4、教学目标:
(1)知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
(2)能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;
(3)德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。
学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。
二、说教法:
著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:
1、实验操作法。
波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。
2、比较法、讨论法、发现法三法优化组合。
几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。然后再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。
三、说学法
“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此我在讲求教法的同时,更重视对学生学法的指导。
1、实验转化法。
2、尝试练习法。
苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在教学两道例题时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
四、说教学程序:
(1)看图说出圆锥的底面和高。
(2)一个圆柱体零件,底面积是6.28平方厘米,高是3厘米,它的体积是多少?
这两道题是复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。
2、谈话激趣,导入新课。
(1)我们已经认识了圆锥,掌握了圆柱体积公式及其应用,这节课,我们一起来学习圆锥的体积。(板书课题)
(2)看到这个课题你们想学习一些什么?
(3)教师总结,出示学习目标。
这个环节让学生自己说出要学的目标,发挥了学生的主体作用,创设了和谐平等的课堂教学氛围。
3、实验操作,探究新知。
本环节教学是本节几何课成败的关键。为了使学生成为学习的主人,在这个环节中,我尽量给学生有对象可说,有东西可做,有问题可想,有步骤可循,让学生都能主动地操作、观察、比较、分析和归纳。
(1)回忆圆柱体积计算公式推导方法。
(2)动手操作,探究圆锥体积计算的公式。
在实验时,我提出了四个问题,让学生带着问题进行操作:
①比一比,量一量,圆柱和圆锥的底和高之间有什么关系?
②用空圆锥装满沙,倒进空圆柱中,可以倒几次?每次结果怎样?
③通过实验你发现了什么?
④你能用实验说明“圆锥的体积不一定是圆柱体积的三分之一”吗?
(3)学生汇报实验结果。
(5)小结,刚才我们用了“实验——发现——归纳”的方法推导出了圆锥的体积公式。
这个环节,让学生动手操作,分析比较,归纳总结,使课堂真正“活”了起来;最后总结了学法,可以让学生举一反三,触类旁通。
4、尝试练习,巩固提高。
(1)同时出示例1和例2。
例1:一个圆锥形的零件,底面积是19平方厘米。高是12厘米。这个零件的体积是多少?
例2:在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)
①师出示例题,指名读题,说出已知条件和所求问题;
②分析:例题1直接告诉底面积和高,根据公式可以直接求出来;例题2要求小麦的重量,必须先求什么?
③指名板演。
③集体订正,指出计算圆锥体积时,一定不要忘了乘“1/3”。
(2)巩固练习,形成技能,完成“做一做”。
这个环节充分放手让学生自己尝试练习,可以挖掘学生的潜能,让学生体验成功的乐趣。
5、看书质疑,布置作业。
①通过这节课的学习,你学到了什么知识?你用了什么方法学到这些新知识的?还有什么疑问的吗?
看书总结和质疑问难,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生去质疑问难,从而实现课内向课外的延伸。
(本篇习作是本人在20xx年8月22日由市、县进修学校有关专家组织的晋升小学高级教师脱稿说课考核中荣获优秀奖)
圆锥的课件(篇3)
尊敬的各位领导、老师:
大家上午好!今天,我说课的题目是《圆锥的体积》,下面我将从教材分析、学情分析、教学目标、教学重难点、教法学法、教学过程,板书设计这几个方面展开我的说课。
一、说教材
《圆锥的体积》这部分内容是小学阶段几何知识的重难点部分,在学生学习了立体图形——长方体、正方体、圆柱的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。
教材突出了探索体积公式的过程,引导学生在装沙和装米的实验基础上进行公式推导。
二、说学情
本节课是学生在学习了长方体、正方体、圆柱这三种立体图形以及认识了圆锥特征的基础上进行的,学生已经具有了一定的“转化思想”和“类推能力”。在展开研究中,学生分组操作,通过量一量、倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。
三、说教学重难点
根据对教材和学情的分析,我制定以下三维教学目标:
知识与技能目标:掌握圆锥的体积公式,并能应用公式解决简单的实际问题。
过程与方法目标:通过观察、操作、猜测、验证等数学活动,发展学生的推理能力。
情感态度与价值观目标:在体积公式的推导过程中,渗透转化的数学思想。
四、说教学重难点
教学重点:理解并掌握圆锥体积的计算方法,并能解决简单的实际问题。
教学难点:理解圆锥体积公式的推导过程。
说教法学法
为了突出重点突破难点,在教法上,我选择以动手操作法为主,以引导发现法、设疑激趣法、多媒体辅助法为辅,让学生全面、全程地参与教学的每一个环节。
学法上:我充分发挥学生的主体作用,以小组合作学习为主要形式,让学生全面参与新知的发生、发展和形成的过程。
说教学过程
课堂教学是学生获取数学知识,发展能力的重要途径,结合“学.学.导.练”的教学模式,我设计了以下四个教学环节:
第一环节:自主学习
第二环节合作学习
第三环节:教师讲导
第四环节:精练强化
五、说板书设计
圆锥的体积=×圆柱的体积=×底面积×高
S=sh
圆锥的课件(篇4)
(一)圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。
内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。
1、通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积。
2、培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
3、渗透事物间相互联系的辩证唯物主义观点的启蒙教育。
难点:理解圆柱和圆锥等底等高时体积间的倍数关系。
关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。
以谈话法、实验法为主,讨论法、读书指导法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。
小学阶段学习的几何知识是直观几何。小学生学习几何知识不是严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识。主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做在圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是做在小圆锥里装满沙土往大圆柱中倒的实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系,搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。
1、教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。
2、学生学习圆锥体积公式的推导时,通过自己操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的.方法探索新知识。
1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。
回答:已知底面积和高怎样求它的体积?已知底面半径、直径或周长又怎样求它的体积?
这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。
2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积。
引导学生回忆圆柱的体积计算公式是怎样推导的?想:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?
首先,学生带着如下三个问题自学课文,(电脑出示):
(1)用什么方法可以得到计算圆锥体积的公式?
(2)圆柱和圆锥等底等高是什么意思?
(3)得出了什么结论?圆锥体积的计算公式是什么?
其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。
第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V=1/3Sh。
第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。
第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
练习:
填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是()立方厘米。
2、教学应用体积公式计算体积(电脑出示题目)。
圆锥的课件(篇5)
1、求下面圆锥体的体积。
(1)底面积14.8平方厘米,高1分米。
(2)底面周长31.4米,高是3.9米。
2、一个圆锥形沙堆,底面周长50.24米,高6米。
(1)这堆沙的体积是多少立方米?
(2)如果每立方米沙重1.7吨,这堆沙有多少吨?
3、一个圆柱体,底面直径是8米,高是3米,求与它等底等高的圆锥体的体积。
4、用铁皮制一个圆柱形油桶,底面半径4分米,高的长度与底面半径的比是3:1。
(1)制作这个油桶至少需要铁皮多少平方分米?(用进一法取近似值,得数保留整平方分米。)
(2)这个油桶的容积是多少升?
5、一个圆锥形沙堆,底面积12.56平方米,高1.2米。用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?
6、一个圆柱形油桶 ,装满了汽油,把桶里的`汽油倒出,还剩12升。油桶的底面积是5平方米,油桶的高是多少?
圆锥侧课件
工作总结之家编辑针对您的查询,为您梳理了以下相关内容:“圆锥侧课件”,本文仅供参考,希望能给您带来一些启示。教案课件是教师日常教学工作的一部分,想必老师们对编制教案课件并不感到陌生。教案在完成教学任务过程中扮演着关键角色。
圆锥侧课件 篇1
一、教材分析
本节课是北师大版数学教材六年级下册第一单元第11~12页的内容——圆锥的体积。
这部分内容是发展学生空间观念的内容,也是小学阶段几何初步知识的最后一个内容,是学生在了解和理解了体积和容积的含义基础上,进一步了解圆锥体积或容积;在研究了圆柱体积计算方法的基础上,教材继续渗透类比的思想,再次引导学生经历“类比猜想——验证说明”的过程,进行圆锥体积计算方法的探索。内容包括了解圆锥体积或容积,理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。
二、学生情况
学生已经直观认识了长方体、正方体,掌握了长方体、正方体体积的计算方法,在前面的课时中也已经经历了“类比猜想——验证说明”的探索过程,通过已有的长方体、正方体体积计算方法,学习了圆柱的体积计算方法,在此基础上,让学生再次经历类比探索去学习圆锥体积计算方法。但长方体、正方体和圆柱都是直柱体,类比和猜想圆柱体积计算方法对学生来说比较容易,但是圆锥不是直柱体,因此在探索活动中,需要引导学生提出合理的猜想。学生对这部分内容的掌握,不仅有利于掌握立体图形之间的本质联系,提高几何体知识掌握水平,同时也利于提高运用所学数学知识和方法解决一些简单实际问题的能力。
三、教学目标
根据新课标的具体要求,和本节课的教学内容,结合学生实际制定了以下教学目标。
知识目标:
1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。
2、经历圆锥体积计算公式的推导过程,理解并掌握圆锥体积的计算公式,能正确计算圆锥体积。
3、能运用圆锥体积的计算方法,解决有关实际问题。
能力目标:
培养学生的观察、操作能力,进一步丰富对空间的认识,建立空间观念,发展学生的形象思维,增强学生的应用意识。
情感目标:
能积极参加实验活动,培养学生探索的精神和小组合作的意识。
四、教学重、难点
重点:圆锥体积的计算。
难点:理解圆锥体积与圆柱体积的关系。
关键:经历“小实验”活动,在活动中发现规律。
五、教法、学法
本节课,在教法和学法上力求体现以下两方面:
1、以讲解法、教具操作法、实验法为主,实现教学目标,在教学中,即充分发挥学生的主体作用,调动学生积极主动地参与教学全过程。
2、教学充分发挥学生的主体作用。通过自己操作实验、观察比较、讨论小结,发现圆柱与圆锥的体积关系,从而推导出圆锥的体积计算公式。
六、教具准备
等底等高的圆柱体和圆锥体容器,不等底等高的圆柱和圆锥。
七、教学环节
环节一复习铺垫
回忆并应用圆柱体积计算公式。通过练习巩固对圆柱体积计算公式的认识,为下面学习圆锥体积计算公式作好铺垫。
环节二探索新知
首先出示教材中的情境图,并提出问题:求这堆小麦的体积,实际上就是求什么?引导学生结合情境来进一步体会圆锥体积的含义。接着直接揭示课题——研究圆锥体积计算方法。
探索圆锥体积计算方法。分为以下几个步骤完成。
步骤一:引导学生回忆圆柱体积计算方法的推导,这样,学生可以利用类比迁移规律,从求圆柱体积的思路、方法中得到启示。然后让学生思考:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?学生很容易根据圆柱和圆锥的底面都是园,来联想到转化成圆柱。
步骤二:放手让学生大胆的猜想如何计算圆锥的体积。学生很容易想到如果是用底面积乘高,计算出来的是圆柱的体积,而直觉会让他们想到圆锥的体积应该比圆柱体积小,但这个时候他们并没有意识到“等底等高”。让学生继续猜想应该是圆柱的几分之几,并说明猜想的依据。在猜想过程中,学生可能得出的结论多样,这个时候针对不同的结论,如:圆锥体积是圆柱体积的二分之一;圆锥体积是圆柱体积的三分之一等。教师随即出示几个大小不同,且不等底等高的圆柱和圆锥让学生仔细观察,比如:大圆锥和小圆柱,或者底面积(高)相同,但是高(底面积)不相同的圆柱和圆锥。通过观察让学生发现高和底面积如果不相同,不能找到与圆锥的关系,因此只有圆柱和圆锥等底等高才便于我们研究。
步骤三:实验活动。在学生形成猜想后,再引导学生“验证说明”自己的猜想。展开分组活动,让学生参与操作实验,用一个空心的圆锥装满水或沙子倒入等底等高的圆柱容器中,看几次能倒满;然后再把圆柱中装满水或沙子倒入等底等高的圆锥容器中,需要倒几次才能倒完,并做好观察记录。让学生初步感知等底等高的圆柱和圆锥体积之间的关系。接着教师用一对等底等高的圆柱和圆锥。
圆锥侧课件 篇2
“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此,我在讲求教法的同时,更重视对学生学法的指导。
1、实验转化法
有些知识单凭解说是无法让学生真正理解的,只有通过实验,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法、步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样,通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。
2、尝试练习法
苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在学习例五时,放手让学生尝试自己自己去发现、总结、归纳,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
圆锥侧课件 篇3
教学内容:
人教版小学数学六年级下册《圆锥的认识》
教学目标:
1.通过教学,使学生能完整、准确地掌握圆锥的基本特征及各部份的名称,认识圆锥侧面的展开图。
2.通过学习培养学生观察能力,操作能力和思维能力。
3.通过学习发展学生的空间观念。
教学内容及重点、难点分析
1.教学内容分析
《圆锥的认识》这部份内容有:圆锥的特征、圆锥的底面、圆锥的高、圆锥的侧面及它的展开图。
圆锥是一种比较常见的立体图形,圆锥在日常生活中的物体有很多,课的开始,就让学生用自己在生活中发现的圆锥入手,概括中圆锥的几何图形。然后通过观察、比较的认知方法主动地获取知识。
2.教材重点圆锥的特征及各部份名称。
3.教材难点圆锥的高的测量方法。
教学对象分析
圆锥是学生在小学阶段学习立体图形的最后一部份内容。前边学生已经认识了长方体、正方体、圆柱等立体图形,学生具备一定的空间观念。头脑中几何表象较丰富。在教学中,突出“观察、对比、操作、分析讨论,大胆探索,总结规律”的学法指导。发展学生的思维。让学生主动、生动地在活动中学习数学。
教学策略及教学法设计
本节课主要通过网络和学生动手操作,让学生在主动的教学情境中,集体讨论归纳出圆锥的特征。另外,提供丰富的感性材料,创设轻松愉快的教学氛围,注重学生之间的多向交流。放手让学生自主探索,发挥学生的创造力。同时加深对圆锥的认识。
教学过程:
一、创设情景,游戏导入
师:首先和同学们玩个游戏:奇思妙想,想象一下把我们学过的这些平面图形高速旋转能得到什么立体图形?
出示:圆形、长方形、梯形、直角三角形
学生大胆猜测后,教师用准备好的教具演示。
师:今天我们先来研究由直角三角形旋转得到的立体图形——圆锥。(板书课题)
圆锥侧课件 篇4
教学目标:
1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。
2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。
3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。
师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。
2、圆锥有什么特征?
同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)
(1)、你认为圆锥体积的大小与它的什么有关?
(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?
(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?
(2)、通过实验,你发现了什么?
小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一 。
3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察, 用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?
生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积= 1/3×圆柱体积 )
师:那么,圆锥的体积可以怎样表示呢? (板书:圆锥的体积= 1/3×底面积×高)
一个圆柱形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?
通过这节课的学习,你有什么收获呢?
圆锥侧课件 篇5
一、说教材
1、本节教材是义务教育小学数学(苏教版)六年制第十二册第二单元《圆柱和圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导、例五、相应的“试一试”及“练一练”。
2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
3、教学重、难点:
⑴教学重点:能正确运用圆锥体积计算公式求圆锥的体积;
⑵教学难点:理解圆锥体积公式的推导过程。
4、教学目标:
⑴知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
⑵能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;
⑶德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
5、教、学具准备:⑴教具准备:等底等高的圆柱、圆锥一对;
⑵学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,准备一定量的细沙。
二、说教法
著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而是要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:
1、实验操作法。波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验:通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。
2、比较法、讨论法、发现法三法优化组合。几何知识具有逻辑性、严密性、系统性的特点。因此,在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一。”然后,再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生理解“等底等高”的重要意义,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。
三、说学法
“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此,我在讲求教法的同时,更重视对学生学法的指导。
1、实验转化法
有些知识单凭解说是无法让学生真正理解的,只有通过实验,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法、步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样,通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。
2、尝试练习法
苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在学习例五时,放手让学生尝试自己自己去发现、总结、归纳,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
四、说教学程序
本节课我设计了以下四个教学程序:
1、谈话导入
⑴出示圆柱:如果想知道这个容器的容积,怎么办?
⑵出示圆锥:如果想知道这个容器的容积,怎么办?
2、教学例五
⑴引导观察:这个圆柱和圆锥有什么相同的地方?
⑵估计一下:这个圆锥的体积是圆柱体积的几分之几?
⑶讨论:可以用什么方法来验证你的估计?
⑷分组验证;引导学生用适合的方法进行操作验证。
⑸交流:说说自己小组是怎么验证的,得到的结论是什么?
⑹讨论:①通过实验,我们知道这个圆锥的容积是这个圆柱容积的三分之一,那能不能说圆锥的体积就是圆柱的体积的三分之一?为什么?应该怎么说才准确?②那怎么算出这个圆锥的容积呢?③推导出圆锥体积的公式(师板书)。④如果已知r和h圆锥体积公式还可以怎样计算?如果已知d和h圆锥体积公式怎样计算?
⑺完成“试一试”。
3、巩固练习
做“练一练”。
4、归纳总结
通过本节课你有什么收获?有哪些问题需要我们今后注意?
圆锥侧课件 篇6
教材分析
本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.
设计理念
数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
教学目标
1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。
教学难点:圆锥体积公式的推导
学情分析
学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对 于新的知识教学,他们一定能表现出极大的热情。
教法学法:试验探究法 小组合作学习法
教具学具准备:多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)
教学课时 1课时
教学流程
一、回顾旧知识
1、你能计算哪些规则物体的体积?
2、你能说出圆锥各部分的名称吗?
设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。
二、创设情景 激发激情
展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?
设计意图以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)
三、试验探究 合作学习(探讨圆柱与圆锥体积之间的关系)
探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?
1、猜想:猜想它们的底、高之间各有什么关系?
2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;
3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论)
4、教师介绍数学专用名词:等底 等高
设计意图通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。
探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?
1、大胆猜想:等底等高圆柱与圆锥体积之间的关系
2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)
3、小组汇报试验结论(提醒学生汇报出试验步骤)
教学预设:
(1)圆椎的体积是圆柱体积的3倍;
(2)圆锥的体积是圆柱体积的三分之一;
(3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。
4、通过学生汇报的试验结论,分析归纳总结试验结论。
5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)
设计意图
通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。
探究三:(伸展试验---演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。
1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?
2、观察老师的试验,你发现了不等底等高的圆柱与圆锥的体积之间还有三分之一的关系吗?
3、学生通过观看试验汇报结论。
4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。
5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。
设计意图
通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。
四、实践运用 提升技能
1、判断题:题目内容见多媒体展示独立思考---抽生汇报---说明理由---师生评议
2、口答题:题目内容见多媒体展示独立思考---抽生汇报---学生评议
3、拓展运用:课本例题3学生分析题意---小组合作解答---学生解答展示---师生评议
设计意图通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。
五、谈谈收获:这节课你学到了什么呢?
六、课堂作业:
1、做在书上作业:练习四 第4、7题
2、坐在作业本上作业:练习四 第3题
圆柱与圆锥课件
每个老师在上课前需要规划好教案课件,又到了老师开始写教案课件的时候了。教案是实施教育目标的重要工具,写教案课件时需要注意哪些方面?编辑为您精心准备了“圆柱与圆锥课件”的相关内容希望对您有所帮助,如果您能感受到本文所传递出的信息那就是我的目的!
圆柱与圆锥课件 篇1
单元总目标:
1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。
2、理解圆柱的表面积、侧面积、体积的意义。会推导表面积、侧面积、体积的公式,认识进一法取近似值,能灵活解决实际问题。
3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。
4、培养学生观察、比较、归纳的能力,以及空间观念。
5、培养学生逻辑思考能力,有条理性的解决问题的能力。
单元重点:圆柱体体积的计算
单元难点:(1)圆柱体体积公式的推导过。
(2)圆柱体侧面积、表面积的计算。
(2)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。
突出重点、突破难点的关键:充分运用直观教具,进行割拼演示、实验,有目的、有步骤地引导学生观察、思考,推导出计算公式和有关概念。
单元难点的剖析:(1)表现为:学生难于想到把一圆柱体的立体图形转化成什么图形来研究。怎样把它转化。
原因:圆柱体和长方体在表面看来并没有什么联系。并且学生还很难由圆与圆柱的联系,而想到圆能转化成长方形来研究,圆柱就可以转化成长方体来研究。
解决策略:首先回忆研究圆的面积计算时把圆转化成什么图形?如何剪拼成了这个学过的图形?借助多媒体课件把一个个完全一样的圆形堆成一个圆柱体,通过这个过程发展学生的空间想象力进行猜想:圆柱体能剪拼成什么图形,请学生试试看。
(2)表现为:对圆柱体的侧面积公式容易获得,但学生对已知R或D求侧面积的问题,学生转不过,容易用底面积乘高来计算。而对表面积的计算,由于表面积公式中涉及的公式较多,学生往往不小心就弄混公式。
(3)表现为:在具体的问题情境中会用错公式,如:求侧面积的求成了表面积,求体积的求成了表面积等。
原因:学生可能对概念、公式记忆较熟,但在具体的问题环境下用错公式。主要还是学生对概念的感知不够。
解决策略:(1)为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。
(2)借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。
(3)公式一定让学生动手操作参与到推导过程中,不能把公式直接交给学生。
(4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。
单元策略:基于本单元是研究几何图形的有关知识,教学中主要采用学生动手操作、观察、实验等直观手段辅助教学。多让学生参与获得公式或经验。如:圆柱体展开图的特征、侧面积、表面积、体积及圆锥体的体积计算。
错例的估计和采集:概念辨析题:(1)一只铁皮水桶能装水多少升是求水桶的()。(2)做一只圆柱体的油桶,至少用多少铁皮,是求油桶的()(3)做一节铁皮水管,要多少铁皮是求水管的()(4)给个圆柱体的花瓶包装在盒子里,需用多大的盒子是求花瓶的()
分析及策略:这些属于概念不清的问题,因为这些知识点本身有联系又有区别,所以易混,因此教学中重点在新授中注意让学生多体验、多感受。还要在综合练习中加强对比,沟通它们的联系和区别。
解决问题:(1)一个圆锥形的沙堆,底面直径是2米,高是0.5米,如果每立方米是800千克,这堆沙子一共多少千克?写出基本关系式再解答
(2)有一个礼堂内有8根直径是50厘米、高5米的圆柱形的柱子,用了8千克的红色油漆粉刷,每平方米需用多少油漆?写出基本关系再解答
分析及策略:此类型的错误主要是公式用错,原因还是对概念不清,解题思路不明,因此,教学中在保证理解概念的前提下多让学生讲思路、强调解答步骤的书写要有条理。
有关圆柱体和圆锥体的混合题:(1)等底等高的圆柱体和圆锥体,圆锥体的体积是圆柱体的体积的(),圆柱体体积比圆锥体体积多(),圆锥体积比圆柱体少()。
(2)一个圆柱体积是96立方厘米,与它等底等底高的圆锥体积是()立方厘米,圆锥体积比圆柱体积少()立方厘米。
(3)一个圆锥和一个圆柱等底等高,它们体积之和是36立方分米,圆柱体积比圆锥大()立方分米。
分析及策略:此类型题的错因主要是对圆锥体积公式的推导过程还只是一个圆锥体积公式的获得过程,是停在表面上的认识,并没有真正通过实验过程对两者在一定条件下的关系弄清楚。因此这个推导过程中应让学生把两种几何体的体积关系,能反说、正说、比多少等都能说清。
练习题的分析:重点讲解的题目:39页第10题(重点说明生活中常说的圆柱体的长也就是数学意义上的圆柱体的高)。40页的13题(体积公式与比例知识的综合运用,即利用底面积一定时体积和高成正比例的关系来确定两个圆柱体体积的比,求出第二个圆柱体的体积,最后求出它们的差。)45页的第6题(关键是培养学生的实践能力,了解测量圆锥的高的方法。)、第8题(训练学生的解题思路,先算什么,再算什么。)、第11题(由圆锥的体积:等底等高的圆柱的体积=1:3,那么现在它们的比是1:6,底是相等的那说明圆柱的高是圆锥高的2倍,于是圆柱的高是9.6。实际上是圆锥与圆柱体积关系的灵活应用。)
课时安排:1、圆柱的认识31页至33页及例1
2、圆柱的表面积33页例2--例3
3、圆柱的体积公式的推导36页例4及补充一道已知R求V的例题。
4、认识圆柱的容积37页例5
5、圆柱有关公式的对比练习39页8、9(增加不同位置类型的圆柱体)39页7、10
6、圆锥的认识41页
7、圆锥的体积公式的推导42页至43页例1
8、圆锥体积的应用43页例2
圆柱与圆锥课件 篇2
教学目标
1、使学生在观察、操作、交流等活动中感知并发现圆柱和圆锥的特征,知道圆柱和圆锥的底面、侧面和高。
2、使学生在活动中进一步积累立体图形的学习经验,增强空间观念,发展数学思维。
教学重点
1、在充分感知的基础上,探索圆柱和圆锥的特征。
2、进一步体验立体图形玉生活的联系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。
教学难点
圆柱和圆锥的特征。
教学方法
分析中归纳解题方法
教具
多媒体课件
教学过程与内容设计
一、复习导入
二、新授
1、拿出圆柱和圆锥,说说它门的特点。
2、你能找出生活中有哪些物体是圆柱和圆锥形的吗?
3、现在我们首先来研究圆柱。
(1)请以小组为单位,仔细观察桌上的圆柱,看看它有哪些特点。(提示:从面、棱、顶点和高这几方面来研究。)
(2)请一位同学代表你们组来说说你们发现了什么?
(3)老师现在有问题要问大家:圆柱上下两个圆有什么关系,怎样验证?
(4)我们称这两个圆为圆柱的底面,也就是说圆柱有两个底面,一个侧面。
(5)圆柱的高指什么?你有办法测量吗?说明圆柱有多少条高,长度有说明关系?
(6)谁能完整的说一下圆柱的特征。
1、教师提问:现在找找请你们带来的东西中,哪些是圆柱?请把圆柱举起来。
2、举出学生带来的东西中不是圆柱的例子。
3、揭示实物图,出现圆柱几何图形。
教师说明:我们所学的圆柱都是直直的。,上下粗细相同的直圆柱,我们叫它圆柱。
出示高、低不同的两个圆柱。
用直尺和三角板演示圆柱的高。
使学生明确:圆柱两个底面之间的距离叫做高。
4、下面我们来认识另一个立体图形——圆锥。
三、巩固练习
四、全课总结。
八、作业设计
课本20页练习五4、
欣赏一下生活中的圆柱和圆锥。
九、板书设计
圆柱和圆锥的认识
圆柱的上、下两个面叫做底面、它们是两个完全相同的两个圆。
圆柱的侧面,是一个曲面。
圆锥,有一个顶点,底面是一个圆形,侧面一个曲面。
教学反思
本课时的内容较简单,但作为教师,我们并不能仅仅停留在教给学生有关圆柱和圆锥的特征这一层面上。研读教材,我发现教材力求体现让学生在主动探索的过程中感知圆柱和圆锥的特征,这与教师单纯地教给学生圆柱与圆锥的特征是有本质不同的。如果教师要教给学生这些知识的话,可能5分钟的时间就够了。但同样的,学生也可能很快就遗忘了。让我感到心有余而力不足的是,我很清楚自己在这节课中应该体现怎样的教学理念,应该怎样让学生主动参与新知识的学习,但实际操作时,却由于各种条件的限制没有很好地达成自己课前预设的教学效果。
圆柱与圆锥课件 篇3
教材第1819页的例1,完成第19页的练一练和练习五的第14题。
1.使学生认识圆柱和圆锥的特征,能看懂圆柱、圆锥的平面图。
2.认识圆柱和圆锥的底面、侧面和高,并会测量高。
1.让学生从整体上体会圆柱和圆锥的特征,了解围成圆柱或圆锥的各个面。2.认识圆柱和圆锥的高,并会测量高。
认识圆锥的高。
教具准备:
教师准备圆柱体、圆锥体的物体,让学生收集一些圆柱体、圆锥体的实物。同时让学生将教科书第125、127页上的图沿边剪下来做成圆柱体、圆锥体。
1、师出示准备的模型圆柱,圆锥,提问,这是什么形体?
2、举例:你在生活中见过哪些物体的形状是圆柱,哪些物体的形状是圆锥?(学生举例)
3、师出示挂图,提问,生活中的例子很多,你看这张图上哪些物体的形状是圆柱,哪些物体的形状是圆锥?
4、揭题:今天我们就来研究这样的直圆柱和直圆锥。(板书课题:圆柱和圆锥的认识)
⑴谈话,请看挂图,刚我们看到的圆柱有大的,有小的,有高的,有矮的,还有这么扁的,同学们桌面上也有大小不一的圆柱,仔细观察这些圆柱,你发现这些大小不一的圆柱有什么共同点?(学生独立思考后同桌交流后自由发表意见,师根据学生回答适当板书)
刚才同学说上下两个面是完全相同的圆,请你想办法证明一下,这个猜想是否正确?
侧面是弯曲的:把你手中的圆柱摸一摸,滚一滚,你发现它的这个面与桌面有什么不同?侧面滚一滚,滚出一个什么形状?
提问:圆柱的高有多少条?它们之间有什么关系?(师出示装满牙签的牙签盒让学生体会)
验证圆柱的高都相等:把圆柱放在桌角量高,变换角度量高,量出的结果一样吗?
⑷练习:说说师手中的杯子,方便面碗是不是圆柱,为什么?指出自己手中圆柱的各部分名称,指出下列圆柱各部分名称
⑴谈话:某些建筑物的顶部,吃的蛋筒,这些物体的形状都是圆锥体,请你观察这些圆锥,说说它们有什么共同点?(学生自由交流,师适当板书)
⑶师指出:图锥的底面是一个圆,圆锥的侧面是一个曲面,从圆锥的顶点到底面圆心的距离是圆锥的高。(边说边在图上标出来)
提问,圆锥的高有几条?
滚动圆锥,你有什么发现?
辨析,这是圆锥的高吗?那你认为怎样测量圆锥的高?师出示图。
⑷指出你手中圆锥各部分名称。
师可引导提问:圆柱和圆柱都有一个侧面,侧面都是一个曲面,为什么圆柱滚动侧面时与圆锥滚动侧面的感觉不一样?
1、练一练:判断哪些物体的形状是圆柱,哪些物体的形状是圆锥?
2、练习五第二题,连一连。
3、练习五第三题:先让学生根据题意转一转,想象一下,再交流。
圆柱的底面半径与高与长方形小旗有什么关系?
4、拿出硬纸做的圆柱和圆锥,想办法量出它们的底面直径和高,记录再自备本上。
圆柱与圆锥课件 篇4
课标要求:
本单元观察物体,动手操作,掌握圆柱和圆锥的特征及它们的组成;在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,归纳出圆柱的表面积、体积和圆锥的体积计算公式,并能正确计算;培养学生运用所学知识解决简单的实际问题的能力;初步参透数学的“转化”思想;初步养成乐于思考、勇于质疑、实事求是等良好品质。
单元/章节内容分析:
本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。
本单元包括圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积等内容。
教学目标:
1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
2、使学生理解求圆柱的侧面积和表面积的.计算方法,并会正确计算。
3、使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。
教学重点:
掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。
教学难点:
圆柱、圆锥体积的计算公式的推导
教学用具:
圆柱体和圆锥体模型
总课时数:
7课时
圆柱与圆锥课件 篇5
怎么让学生爱上读书
“爱”是一种情感,是一个人行动的动力因素。从小培养孩子“爱读书”的行为习惯应该是父母和教师的责任,面对终身学习的21世纪更是这样。让孩子热爱阅读,也就是说,首先要对阅读产生兴趣并养成阅读习惯。
对儿童来讲这种内在需要的产生,往往先要**创设生动的情境,从在**要求下被动地读书,逐步发展到主动地读书,最后转入自动也就是形成了爱读书的积极行为。
我们应该创造以下情境来激发孩子们的阅读兴趣
(一)在好奇中读书
一个人求知欲望应该是先天遗传和后天教育的合金,因此儿童生来就富有好奇心,教育者就可以利用儿童的这一心理特点来引发他们爱读书的需求。例如,你可以提出一些日常生活中的科学问题,当孩子急需知道答案时,你引导他读有关科普的书籍,这时候读书的需求是来自孩子的需要,在这样的读书活动中不仅能培养他爱读书的良好习惯,而且还可以对科普知识产生兴趣。又如,孩子都喜欢听故事,当你给他讲故事时可以把很关键的内容不讲,这时候他特别需要知道,你让他自己在读书中找答案。
总之,我们可以从孩子的好奇心中引导他们的阅读兴趣。
(二)在挑战中读书
儿童的心理特点是好胜好强富有挑战性,所以我们可以根据儿童这一心理特点在读书过程中给他提出一些富有挑战性的问题。例如,格林童话中“灰姑娘”的故事,可以对儿童提出这样的问题:“这个世界有名的童话故事,你能找到故事中有什么不合理的地方吗?
这种富有挑战性的问题会让他更认真地读书,一旦他能找到不合理之处(夜12点钟声一响,什么都变回去了,为什么水晶鞋没有变回去?)他的竞争心和快乐可以说是他想读书的最好支撑。
(三)在需要中读书
当儿童在学校或家中碰到了一些问题,如需要对人对事了解更广的知识,家长和老师可以不急于告诉他答案,而是告诉他可以找哪些书,指导他从书中如何查找等,这样儿童带着需要而去读书,通过读书又帮助他解决了问题,这个过程本身已孕伏和增强了他对读书的自我需要。
(四)在奖励中读书
阅读是一种行为。我们可以让孩子的行为由被动变为主动,由主动变为自动,即养成习惯,这是终身受益。儿童良好行为习惯的形成过程中,必要的强化是非常需要的,因为儿童对外部的强化是很在意的,所以我们可以采用代币法。如规定读5本书可以得到一张读书小学士的奖状,有5张读书小学士可以换取一张读书小硕士的奖状,有5张读书小硕士可以换取一张读书小博士奖状,这种奖励对小学生来讲非常起作用。
儿童开始是为了获取奖状而读书,而在一本又一本读的过程中,他知道了许多故事,懂得了许多知识,逐步对读书本身也产生了兴趣,这就从被动读书转化为主动读书,最后会转化为自动,即形成了爱读书的习惯。父母也可以用奖励他图书的方法,让他自己到图书大厦挑选一本自己喜欢的书,并帮助他建立自己的小小图书角,这些措施均可以促使儿童自小爱读书的行为习惯的形成。
(五)在交流中读书
孩子读书,如果家长和孩子一起读书,读书后,在家里可以进行读书交流。在学校里,老师也可以组织学生分组或上课进行阅读交流会。在交流过程中互相能受到启发,并能促使孩子去读更多的书,交流过程互相讲述读书的体会,彼此能得到教育,促进每个学生整体素质的提高。
(六)在展示中读书
儿童具有好表现自己的心理,更希望在展示中得到**和同伴的欣赏,这种展示过程中的成功感就是爱读书行为形成的动力。我们可以组织故事演讲会,也可以把新读的故事改编成课本剧让儿童自己来演示,也可以举办读书心得评奖活动等。总之,我们要为儿童架起五彩缤纷的舞台,让儿童在舞台上得以展示,在展示中体验成功,在成功中激发他们多读书的愿望和行为。
圆柱与圆锥课件 篇6
教学内容:P29页第1-3题,完成练习五。
教学目的:
1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。
2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。
3、学生认真的学习态度。
教学重点:圆柱、圆锥表面积、体积的计算
教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别
教学过程:
一、复习圆柱
1、圆柱的特征
(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆.两个底面之间的距离叫做高.侧面是一个曲面.)
(2)做第29页第1题:指出几个图形中哪些是圆柱。
2、圆柱的侧面积和表面积
(1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)圆柱的侧面积怎样计算?(底面的周长高)为什么要这样计算?(因为:底面的周长=长方形的长,高=长方形的宽)
(2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)
(3)第29页第2题中求圆柱表面积的部分。
3、圆柱的体积
(1)圆柱的体积怎样计算?(底面积高)计算公式是怎样推导出来的?(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积高,推出圆柱体的体积=底面积高)圆柱体的体积计算的字母公式是什么?(V=Sh)
(2)做第29页第2题中关于圆柱体积的部分。
4、学生独立完成第29页第3题。(先思考用多少布料求什么?装多少水又是求什么?区分清所求的是圆柱的表面积或体积时再计算)
二、复习圆锥
1.圆锥的特征
(1)圆锥有哪几个部分?有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)
(2)做第91页第1题的下半题和第2题的第(3)小题.
让学生将圆锥的特征自己用简单的词汇填写在表中.教师提醒学生:举例一栏要填写自己知道的形状是圆锥的实物.
2.圆锥的体积.
(1)怎样计算圆锥的体积?(用底面积高,再除以3)计算圆锥体积的字母公式是什么?(V=Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)
(2)做第29页第2题中有关圆锥体积的部分。
三、课堂练习
1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)
2、做练习五的第2题。
(1)学生审题后思考:求用多少彩纸是求圆柱的什么?
(2)指名板演,其他学生独立完成于课堂练习本上。
3、做练习五第5题。(可建议学生用方程解答)
四、作业
练习五的第3、4、6题。
圆柱与圆锥课件 篇7
教学内容:
P29页第1-3题,完成练习五。
教学目标:
1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。
2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。
教学重点:
圆柱、圆锥表面积、体积的计算
教学难点:
圆柱、圆锥的特征和它们的体积之间的联系与区别
教学过程:
一、复习圆柱与圆锥的特征
1、圆柱的特征
(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?
(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆。侧面是一个曲面.两个底面之间的距离叫做高.有无数条高。)
2、圆锥的特征
(1)圆锥有哪几个部分?有什么特点?
(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。只有一条高。)
(2)做第29页第1题
二、圆柱的表面积
1、出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答
圆柱的侧面是指哪一部分?它是什么形状的?
(长方形或正方形)
圆柱的侧面积怎样计算?
(底面的周长脳高)
为什么要这样计算?
(因为:底面的周长=长方形的长,高=长方形的宽)
2、表面积是由哪几部分组成的?
(圆柱的侧面积+两个底面的面积)
3、第29页第2题中求圆柱表面积的部分。
三、圆柱和圆锥的体积
1、圆柱的体积怎样计算?
(底面积脳高)计算公式是怎样推导出来的?
(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积脳高,推出圆柱体的体积=底面积脳高)圆柱体的体积计算的字母公式是什么?(V=Sh)
2、圆锥的体积怎样计算?
(用底面积脳高,再除以3)计算圆锥体积的字母公式是什么?(V=1/3Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)
3、做第29页第2题
4、学生独立完成第29页第3题。(先思考用多少布料求什么?装多少水又是求什么?区分清所求的是圆柱的表面积或体积时再计算)
四、课堂练习
1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)
2、做练习五的第2题。
(1)学生审题后思考:求用多少彩纸是求圆柱的什么?
(2)指名板演,其他学生独立完成于课堂练习本上。
3、做练习五第5题。(可建议学生用方程解答)
一个圆锥形沙堆,度面积是28.26平方米,高是2,。5米。用这堆这堆沙在10米宽的公路上铺2米厚的路面,能铺多少米、
4、有块正方形的木料,它的棱长是4分米,把这块木料加工成一个最大的圆柱,这个圆柱的体积是多少?若加工成最大的圆锥呢,它的体积又是多少立方分米呢?
5、右图是一个粮仓,上面是圆锥形,下面是一个圆柱形,如果粮仓墙壁的厚度不计,这个粮仓的容积式多少立方米?上面圆锥的高是3米,圆柱的高是5米,底面直径8米。(图略)
教学反思:
在本节的教学设计中,本计划在引导学生回顾圆柱体积公式的推导过程时,引导学生想像:随着将圆柱的每一份分得越来越窄,越来越窄时,所拼成的长方体的长会逐渐变成一条直线,拼成的也将不再是一个近似的长方体,而是一个标准的长方体,进而渗透极限思想。但这个环节在实际教学中被忽略了。
反思这节课的教学设计与实际教学过程,还有一些问题需要思考与改进。如
怎样把握复习与新授的关系?
圆柱和圆锥分别有哪些重要的面?有什么比较关键的线?有哪些比较特殊的点?这三个问题的研究,来对圆柱和圆锥从表面到内部的特征进行再认识。这样就打乱了教材中的设置的对这两个立体图形的研究顺序,这样的再认识是不是有新授的痕迹?本课的教学目标不仅要复习圆柱与圆锥的特征、表面积与体积的相关知识,还要引导学生认识复习的意义,沟通知识间的联系,渗透数学思想方法,培养学生运用数学思想方法解决问题的能力。在一节课中包含这么多的教学目标,是不是能一一达成,是不是有贪多嚼不烂的可能?
圆柱与圆锥课件 篇8
教学目标:
1、通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
2、通过学生动脑、动手,培养学生的思维能力和空间想象能力。
3、培养学生个人的自主学习能力和小组合作学习的能力。
教具准备:
1、等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、水槽6套。
2、一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
3、圆锥有什么特征?
学生回答后,教师用课件演示:屏摹上显示一个圆锥体,将它的底面、侧面、高和顶点闪烁。
今天我们就利用这些知识探讨新的问题——怎样计算圆锥的体积(板书课题)
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。
(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
底面积相等,高也相等,用数学语言说就叫“等底等高”。
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)
教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)
的水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验。
谁来汇报一下,你们组是怎样做实验的?
学生交流,教师板书公式:
师:这里所说的底面积和高指的是谁的底面积和谁的高?
四、尝试应用:
1、课件出示引入题中的三堆沙子,同时添加数据:
(1)底面积是10平方米,高是0.6米。
(2)半径是2米,高是0.6米。
(3)底面周长是12.56米,高是0.9米。
通过计算你认为这三堆沙子够不够?
2、从做实验所用的材料中任选一个圆锥,通过测量计算出它的体积是多少。
3、
(1)一个圆柱的体积是87立方米,与它等底等高的圆锥的体积是多少立方米?
(2)一个高是30厘米的圆锥形玻璃杯装满水,现把杯中的水全部倒入一个和它等底等高的圆柱形水杯里,水在圆柱形水杯里的高度是多少厘米?
(3)有一个圆柱形的木块,底面半径是1分米,高是3分米,把它削成一个最大的圆锥体,你知道圆锥的体积吗?去掉部分的体积呢?去掉部分的体积相当于圆柱体积的几分之几?
五、推荐作业:
墙角有一堆沙子,你能想办法求出这堆沙子的体积吗?
圆柱与圆锥课件 篇9
本单元内容是在学生已经探索并掌握长方形、正方形和圆等一些常见的平面图形的特征以及长方体、正方体的特征,并直观认识圆柱的基础上进行教学的。此前对圆面积公式的探索以及对长方体、正方体特征和表面积、体积计算方法的探索,既为进一步探索圆柱和圆锥的特征,探索圆柱表面积的计算方法以及圆柱和圆锥的体积公式奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。教学中我注意了以下几个方面:
认识圆柱时,由于学生对圆柱已有了一些直观的认识,教学中我先让学生从情境图中找出圆柱,再让学生举例说说生活中还有哪些物体的形状是圆柱的。然后引导学生通过观察、比较与交流,进一步探索圆柱的特征。在此基础上,结合圆柱的直观图,介绍圆柱的底面、侧面和高的含义。这一过程,学生是在教师的引导下进行学习的,对圆柱的特征有了较完整的认识。
二、注意学习方法的迁移和知识的对比,关注猜想和估计在探索学习中的作用
圆锥的认识和圆柱的认识在研究内容上有其相似之处。认识圆柱后我及时地引导学生进行回顾:“圆柱有哪些特征?各部分的名称是什么?”通过交流学生明白了对于圆柱是从面、直观图等方面进行研究的。我及时设问:“我们能从哪些方面来研究圆锥?”通过交流,学生对学习的方法进行了有效地迁移,学习的积极性得到有效地激发。对于圆锥,不同的同学有了不同的认识。然后,通过适时地交流和组织阅读课本,学生对于圆锥有了较好的认识。在认识了圆柱和圆锥的特征以后,我让学生对它们的特征进行了有效的对比。从而使学生对于圆柱和圆锥有了更深的认识,完善了学生的知识系统。
在探索圆柱的体积公式时,先让学生观察底面积和高分别相等的长方体、正方体和圆柱,猜想它们体积间的关系,再启发学生把以前探索圆面积公式的经验和方法迁移到探索圆柱的体积公式中来,进而推导出圆柱体积公式,验证猜想。
三、从学生的生活实际出发,结合具体事物,利用学生已有的经验开展教学活动
在教学圆柱的表面积的计算方法时,我先布置学生完成学具中等底等高的圆柱和圆锥的模型的制作,让学生对圆柱的表面积有个潜在的认识,并为教学体积公式奠定实物基础。教材先让学生围绕求圆柱形罐头侧面商标纸的面积是多少这一问题进行探索。在此基础上,我找来几个圆柱形并具有侧面商标纸的罐子,用剪刀剪开商标纸进行实物演示,再引导学生在方格纸上画出圆柱展开图,探索圆柱表面积的计算方法。学习圆锥的体积公式,重点是理解圆锥体积等于等底等高的圆柱体积的中的1/3“1/3”,学生没有动手操作,就没有亲身经历的体验,对1/3也就没有强烈的感受,所以我利用原有学生制作的模型,让学生在沙池中装、倒细沙,学生自己动手操作,亲身体验,推导出圆锥的体积公式,从而提升学生的数学思维水平,培养学生的学习能力。
通过本单元的教学,我认识到在我们的教学中要注意教材编排的特点,有层次地发挥教师的主导作用。教学中的“度”确实应该引起我们的重视。