比例应用题教案 共50份
比例应用题教案栏目给大家带来大量比例应用题教案、比例应用题教案范文大全等内容,帮助大家对过去的工作进行经验总结,更多比例应用题教案相关内容可以关注我们!
教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。 通过学生反应,教师能知晓学生在课堂上的表现状况。以下是我在网络上选取的一篇“比例应用题教案”的文章,为了方便您的使用请收藏本网页链接!
比例应用题教案 篇1教学目标
1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。
2.复习用正比例方法解答应用题。
3.复习用反比例方法解答应用题。
教学重点和难点
判断两种相关联的量成什么比例;确定解答应用题的方法。
教学过程设计
(一)复习数量关系
判断两种相关联的量成不成比例,确定解答应用题的方法。
1.被除数一定,除数和商。
2.一条路,已修的和未修的。
3.梯形的上、下底长度一定,梯形的面积和它的高度。
4.每块砖的面积一定,砖的块数和铺地面积。
5.挖一条水渠,参加的人数和所需要的时间。
6.从甲地到乙地所需的时间和所行走的速度。
7.单位面积一定,播种面积和总产量。
8.时间一定,速度和距离。
9.订阅《北京儿童》的份数和所需钱数。
(二)复习应用题
1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?
第一步,先找对应关系:
8天56台
31天?台
第二步,判断成什么比例?(每天生产的台数一定,成正比例。)
请你在对应关系的旁边写上正字,决定用正比例方法做。
解设到月底可生产x台。
x=217
答:照这样速度月底可生产217台。
2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?
第一步,先找对应关系:
20页600本
24页?本
第二步,判断成什么比例?(纸张总页数一定,成反比例。)
请你在对应关系的旁边写上反字,决定用反比例方法做。
解钉成24页一本的练习本,可钉x本。
24x=20600
x=500
答:如果钉成24页一本的练习本可钉500本。
学生独立地用老师教的分析应用题的思路和方法在本上做两道题。
(1)火车3小时行135千米,用同样的速度5小时可以行多少千米?
(2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?
(三)练习解答两步的比例应用题
1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?
黑板上的对应关系变成:
解设x天读完。
(6+4)x=630
10x=
查看更多>>希望这个“比例应用题教案”能够让您获得更多的收益。教案课件是老师在上课前精心准备的,老师通常会认真地设计教学内容。通过学生的反馈,老师可以了解学生在课堂上的表现状态,这对你在工作和学习中都是有帮助的。本文仅供参考!
比例应用题教案【篇1】教学目标
1.使学生理解按比例分配的意义.
2.掌握按比例分配应用题的特征及解题方法.
3.培养学生应用所学知识解决实际问题的能力.
教学重点
掌握按比例分配应用题的特征及解题方法.
教学难点
按比例分配应用题的实际应用.
教学过程
一、复习引入
(一)根据条件,提问。(男生和女生及全班人数的关系)
已知六年级(3)班女生人数和男生人数的2/3.
(二)口答应用题
六年级(3)班和二年级(3)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?
1.学生口答:1002=50(平方米)
2.教师提问:这是一道分配问题,分谁?(100平方米)怎么分?(平均分)
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?
3.谈话引入。
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题.(板书:分配)
二、讲授新课
(一)把复习题2增加条件如果按3∶2分配,两个班的保洁区各是多少平方米?
(二)教师提问
1.分谁?(100平方米)
2.怎么分?(按3∶2分)
3.求的是什么?
(三)思考:由如果按3∶2分配这句话你可以联想到什么?
(四)尝试解答:用你学过的知识解答例题,并说一说怎么想的?
(五)比较思路:这几种方法中,你认为哪种方法好?为什么?
(六)这道题做得对不对呢?我们怎么检验?
1.两个班级的面积相加,是否等于原来的总面积.
2.把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3∶2.
(七)练习
一个农场计划在100公顷的地里播种大豆和玉米.播种面积的比是3∶2.两种作物各播种多少公顷?
(八)教学例3
学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班.一班有47人,二班有45人,三班有48人.三个班各应栽树多少棵?
1.讨论:这道题与前面所做的题有什么区别?
分配什么?按照什么来分?
怎样计算各班栽的棵数占总棵数的几分之几?
2.学生独立解题
(1)三个班的总人数:47+45+48=140(人
查看更多>>以下是笔者为您准备的“比例问题教案”相关内容,请您查看,点击进入获取最新行业动态。教师会根据课本的主要教学内容整理制作教案和课件,我们应该认真撰写每一份教案和课件。教案是实施个性化教育的重要方式。
比例问题教案【篇1】教学内容:补充:用比例方法解决实际问题
教学目标:1、进一步巩固正比例与反比例的意义,能正确判断两个量是否成比例。
2、能用比例的知识解决实际问题,提高学生灵活解决实际问题的能力。
教学设计:
一、复习
谈话导入:如何判断两个量是否成正比例?或反比例?
二、拓展练习
(一)填空:
1、下面两个量成正比例?成反比例?不成比例?
如果3a=41/b,那么a与b()
引导学生将这个算式改成a与b的比,计算比值后再判断。
2、(1)8/x=y;(2)x/8=y;(3)x-y=8()式中的x与y成反比例,()式中的x与y成正比例。
3、(1)比的前项一定,比的后项和比值。(2)比例尺一定,分母和分数值。(3)正方形的边长和面积。()成正比例,()成反比例,()不成比例。
引导学生将以上3个表达式进行变式,如能变成两个字母的比值或积,即成正或反比例。
4、a和b成正比例,并且在a=1.5时,b的对应值是0.15.
(1)a和b关系式是a/b=().
(2)当a=2.5时,b的对应值是()
(3)当b=9.2时,a的对应值是()
引导学生理解每题要求,独立完成,指名交流。
三、解决实际问题
1、一批煤原计划每天烧4吨,可以烧72天,由于改成节能炉灶,实际每天只烧2。4吨,这堆煤可以烧几天?
学生独立完成,再组织交流。估计学生都用算式解,引导学生判断题中4个数据是指哪两个量?它们是否成比例?成什么比例?用比例的知识怎样解决这个问题?
2、一辆汽车2小时行驶140千米,照这样计算,从甲地到乙地共行了5小时,那么甲、乙两地之间的公路长多少千米?
学生独立完成,再组织交流。估计学生都用算式解,引导学生判断题中4个数据是指哪两个量?它们是否成比例?成什么比例?用比例的知识怎样解决这个问题?
3、一个筑路队修筑一条公路,3天修了75米,照这样计算,再修15天就可完成任务。这条公路全长有多少米?
用算术方法如何解答?用比例任何解答?引导学生用多种比例方法解答。
4、拓展练习:在标有04080120千米的地图上,量得甲、乙两地之间相距9厘米,一列客车与一列货车从甲、乙两地同
查看更多>>