一元二次方程教案 共48份
一元二次方程教案栏目给大家带来大量一元二次方程教案、一元二次方程教案范文大全等内容,帮助大家对过去的工作进行经验总结,更多一元二次方程教案相关内容可以关注我们!
资料一般指可供参考作为根据的材料。无论是生活中,还是工作中,我们都有可能需要用到资料。参考相关资料会让我们的学习工作效率更高。那么,你知道我国有哪些资料种类吗?下面是小编为你精心整理的“一元二次方程的解教案实用九篇”,不妨参考一下。希望你喜欢!
一元二次方程的解教案 篇1本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:
活动1复习回顾解决课前参与
活动2封面设计问题的探究
活动3草坪规划问题的延伸
活动4课堂回眸
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
活动1复习回顾解决课前参与
由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。
活动2封面设计问题的探究
通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。
活动3草坪规划问题的延伸
放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。
活动4课堂回眸
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
一元二次方程的解教案 篇21、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )
2、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )
3、若α、β是方程x2+2x-=0的两个实数根,则α2+3α+β的值为( )
4、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )
5、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )
6、已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )
7、某城底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到底增加到363公顷,设绿化面积平均每年的增长率为x
查看更多>>依据您的要求,我为您搜集了一些资料:“一元二次方程教案”,热烈欢迎您访问本页并仔细阅读。每位教师在备课前都需要准备一份完整的教案和课件,相信对于编写教案和课件这一要求,教师们并不感到陌生。教案是推动学生全面发展能力的有效方法。
一元二次方程教案【篇1】第1教时
教学内容: 12.1 用公式解一元二次方程(一)
教学目标 :
知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
过程与方法目标: 1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。
教学重、难点与关键:
重点:一元二次方程的意义及一般形式.
难点:正确识别一般式中的“项”及“系数”。
教辅工具:
教学程序设计:
程序教师活动学生活动备注创设问题情景1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣. 学生看投影并思考问题通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位. 探 究 新 知 11.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做 查看更多>>从小编的角度来看,“一元二次方程教案”是一个重要的话题。教案课件是老师上好课的基础,因此在准备时不能草率处理。要注意,一份出色的教案课件需要有清晰的知识点设计,这些设计要有层次感。希望通过阅读本文,您可以获得新思路,并希望能对您提供有益的帮助!
一元二次方程教案 篇1在解一元二次方程时,常常需要用到分解因式,但是教材中一般只介绍了提公因式法、平方差公式法和完全平方公式法.
本期我们将介绍一种在因式分解中起着重要作用的方法:十字相乘法.
先来看一个等式:
(x+a)(x+b)=x²+(a+b)x+ab.
把这个等式反过来写就是:
x²+(a+b)x+ab=(x+a)(x+b).
此时我们可以发现,如果一个式子可以化成x²+(a+b)x+ab的形式,它就可以通过因式分解得到(x+a)(x+b).
而x²+(a+b)x+ab的特点是:二次项x²的系数是1,一次项的系数与常数项有联系,一个是a+b,一个是ab.
现在我们来看两个例题:
分析:因为x的系数是1,所以我们要找两个相加等与1的数,而且这两个数乘积是-6. 于是我们找到了-2和3.
=(x+3)(x-2)=0.
分析:因为x的系数是5,我们就要找两个相加等与5的数,而且这两个数乘积是6. 于是我们找到了2和3.
x²+5x-6=0;
x²+7x+12=0;
x²+3x-10=0;
x²-5x+6=0;
x²-4x+3=0.
有的读者会问为什么叫十字相乘法,这与用这种方法解题的方式有关. 这要从这种方法的更一般的形式说起.
=acx²+(ad+bc)x+bd.
这个等式反过来写就是:
=(ax+b)(cx+d).
我们如果把二次项acx²的系数ac和常数项bd按下图的方式写在一个正方形的四个顶点处,那么,让同一条对角线上的两个数相乘之后,我们就得到两个乘积:ad和bc.
让这两个乘积相加,则有ad+bc,这正好是一次项(ad+bc)x的系数.
而在同一行,横着的两个数,让左边的数乘上x再加右边的数,就得到:ax+b和cx+d两个式子,这正是因式分解后得到的结果(ax+b)(cx+d)中的两个因式.
而上图中出现的那个“×”,像个斜放着的“十”字,所以我们称这种方法为:十字相乘法.
这个方法的应用如下:
分析:分别把6和-28进行分解,然后作十字相乘,找可以得到-2的结果.如图:
这里,6分解成2×3,-28分
查看更多>>