一元二次方程教案

一元二次方程教案 共48份

一元二次方程教案栏目给大家带来大量一元二次方程教案、一元二次方程教案范文大全等内容,帮助大家对过去的工作进行经验总结,更多一元二次方程教案相关内容可以关注我们!

一元二次方程的解教案实用九篇

资料一般指可供参考作为根据的材料。无论是生活中,还是工作中,我们都有可能需要用到资料。参考相关资料会让我们的学习工作效率更高。那么,你知道我国有哪些资料种类吗?下面是小编为你精心整理的“一元二次方程的解教案实用九篇”,不妨参考一下。希望你喜欢!

一元二次方程的解教案 篇1

本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:

活动1复习回顾解决课前参与

活动2封面设计问题的探究

活动3草坪规划问题的延伸

活动4课堂回眸

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

活动1复习回顾解决课前参与

由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。

活动2封面设计问题的探究

通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。

活动3草坪规划问题的延伸

放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。

活动4课堂回眸

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

一元二次方程的解教案 篇2

1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )

2、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )

3、若α、β是方程x2+2x-=0的两个实数根,则α2+3α+β的值为( )

4、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )

5、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )

6、已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )

7、某城底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到底增加到363公顷,设绿化面积平均每年的增长率为x

查看更多>>
一元二次方程教案
一元二次方程教案

依据您的要求,我为您搜集了一些资料:“一元二次方程教案”,热烈欢迎您访问本页并仔细阅读。每位教师在备课前都需要准备一份完整的教案和课件,相信对于编写教案和课件这一要求,教师们并不感到陌生。教案是推动学生全面发展能力的有效方法。

一元二次方程教案【篇1】

第1教时

教学内容:  12.1  用公式解一元二次方程(一)

教学目标 :

知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

 

 

 

 

过程与方法目标: 1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。

教学重、难点与关键:

重点:一元二次方程的意义及一般形式.

 

难点:正确识别一般式中的“项”及“系数”。

教辅工具:

教学程序设计:

程序教师活动学生活动备注创设问题情景1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣. 学生看投影并思考问题通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.  探 究 新 知 11.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做 查看更多>>
一元二次方程教案
一元二次方程教案优选

从小编的角度来看,“一元二次方程教案”是一个重要的话题。教案课件是老师上好课的基础,因此在准备时不能草率处理。要注意,一份出色的教案课件需要有清晰的知识点设计,这些设计要有层次感。希望通过阅读本文,您可以获得新思路,并希望能对您提供有益的帮助!

一元二次方程教案 篇1

在解一元二次方程时,常常需要用到分解因式,但是教材中一般只介绍了提公因式法、平方差公式法和完全平方公式法.

本期我们将介绍一种在因式分解中起着重要作用的方法:十字相乘法.

先来看一个等式:

(x+a)(x+b)=x²+(a+b)x+ab.

把这个等式反过来写就是:

x²+(a+b)x+ab=(x+a)(x+b).

此时我们可以发现,如果一个式子可以化成x²+(a+b)x+ab的形式,它就可以通过因式分解得到(x+a)(x+b).

而x²+(a+b)x+ab的特点是:二次项x²的系数是1,一次项的系数与常数项有联系,一个是a+b,一个是ab.

现在我们来看两个例题:

分析:因为x的系数是1,所以我们要找两个相加等与1的数,而且这两个数乘积是-6. 于是我们找到了-2和3.

=(x+3)(x-2)=0.

分析:因为x的系数是5,我们就要找两个相加等与5的数,而且这两个数乘积是6. 于是我们找到了2和3.

x²+5x-6=0;

x²+7x+12=0;

x²+3x-10=0;

x²-5x+6=0;

x²-4x+3=0.

有的读者会问为什么叫十字相乘法,这与用这种方法解题的方式有关. 这要从这种方法的更一般的形式说起.

=acx²+(ad+bc)x+bd.

这个等式反过来写就是:

=(ax+b)(cx+d).

我们如果把二次项acx²的系数ac和常数项bd按下图的方式写在一个正方形的四个顶点处,那么,让同一条对角线上的两个数相乘之后,我们就得到两个乘积:ad和bc.

让这两个乘积相加,则有ad+bc,这正好是一次项(ad+bc)x的系数.

而在同一行,横着的两个数,让左边的数乘上x再加右边的数,就得到:ax+b和cx+d两个式子,这正是因式分解后得到的结果(ax+b)(cx+d)中的两个因式.

而上图中出现的那个“×”,像个斜放着的“十”字,所以我们称这种方法为:十字相乘法.

这个方法的应用如下:

分析:分别把6和-28进行分解,然后作十字相乘,找可以得到-2的结果.如图:

这里,6分解成2×3,-28分

查看更多>>
一元二次方程教案
一元二次方程的解教案收藏十四篇
解二元一次方程组的教案汇总四篇
一元二次方程课件8篇
一元二次方程课件8篇
初一数学二元一次方程教学计划
解一元二次方程课件精选
一元二次方程课件经典15篇
二元一次方程组课件通用5篇
一元一次方程课件八篇
最新二元一次方程课件(通用四篇)
二次元文案
解一元一次方程课件(集合12篇)
一元一次方程课件(推荐十四篇)
解一元一次方程课件(通用六篇)
二次函数教案
一次函数教案
二次元台词57句
2023一元二次不等式课件6篇
2023一元二次不等式课件6篇
二次函数教案收藏
二次根式教案七篇
二次函数教案推荐
分式方程教案实用十一篇
数学二次根式教案11篇
二次复阳文案
二次复阳文案
第二次世界大战教案12篇
学校课程实施方案十二篇
远程教育方案10篇
式与方程教案范本
解方程的教案模板
解方程的教案模板
流程方案
流程方案
第二次世界大战教案精选4篇
第二次世界大战教案精选4篇
二方连续教案六篇
二年级元旦主题活动方案精选
《送元二使安西》教案精品
送元二使安西教案9篇
一升二暑假班招生方案
数学一次函数教案汇集6篇
元旦教师活动方案通用
二次复阳一般多久能好
二次复阳一般多久能好
六一方案及流程汇总(11篇)
六一方案及流程汇总(11篇)
元旦活动方案总结一年级2020
短方案流程
短方案流程
法治教育方案十二篇
方程的意义的教案精选
幼儿园举行元宵节的教案方案
式与方程教案推荐11篇
式与方程教案推荐11篇